
Professorship for Big Geospatial Data Management
Department of Aerospace and Geodesy
Technical University of Munich

Computational Foundations I

Prof. Dr. Martin Werner

Technical University of Munich

TUM School of Engineering and Design

Department of Aerospace and Geodesy

Professorship of Big Geospatial Data Management

Mail: martin.werner@tum.de

Winter semester 2022/23

mailto:Martin.werner@tum.de

Chapter 2: C and C++

2

Bjarne Stroustroup: C++ is a language for developing and using elegant and efficient abstractions.

elegance

efficiency

abstraction

Goals of C++:

- General Purpose Language: no specialization to specific use case or area

- No Oversimplification: At least allow for explicit exploitation of hardware by experts

- Leave no room for lower level language

- What you don‘t use, you don‘t pay for

Why C and C++

Language Year Developed

By

Traditional C 1972 Dennis Ritchie

K & R C 1978
Kernighan &

Dennis Ritchie

ANSI C 1989
ANSI

Committee

ANSI/ISO C 1990
ISO

Committee

How it began: ANSI C

4

- C was invented to program Unix utilities (small programs for managing a computing system)

- At that time, new computers did not have compilers, hence, operating systems for new hardware were

usually written in assembly language, a text representation of machine code.

- It was so clean and nice that the whole Unix operating system was reimplemented in this language

- The Linux kernel is as well implemented in plain C

A recent analysis also shows that C is the most energy-efficient programming language across a wide

variety of problems, see https://greenlab.di.uminho.pt/wp-

content/uploads/2017/10/sleFinal.pdf?utm_source=thenewstack&utm_medium=website&utm_campaign=pla

tform

This makes it an ideal candidate for embedded systems.

C is also the language to program small microcontrollers (Atmel AVR, Arduino, etc.) where memory

efficiency is essential.

History & Facts

5

https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf?utm_source=thenewstack&utm_medium=website&utm_campaign=platform

C++ has been invented mainly as an object-oriented extension to the C language. It provides higher levels

of abstractions and automation, we will cover later.

What does C++ gain over C

- Reusable code

- High-Quality Libraries

- IT Security (e.g., automating pointers, semaphores, etc.)

- Readability

- Going beyond object orientation

Why is C still there?

- Energy efficiency

- Less to no unclear constructs (in C++, some things you can do are just not (fully) defined)

- Legacy Code

Why then C++?

6

The C Programming Language

7

C Programs are written in two types of files:

Source Code (*.c or *.cpp) contain the

implementation of functions.

Header Files (*.h) contain signature

information.

The signature consists of the return type and

the number and types of arguments. It is also

known as the prototype of a function. It is

exactly the information that is needed to

create the assembler code for calling the

function and interpreting the stack

afterwards, but does not include the function

body itself.

Hello World (this time on Linux and Windows)

Line 1 includes the Stanard I/O Library, which

contains the definition of printf.

Line 3 -6 implement a function which calls

printf (whose signature is found in stdio.h)

A C program (command line program) start by

running a function main. There are no

instructions outside of functions!

Compilation Process

9

Linker

Executable (e.g., test.exe)

Compiler

Preprocessor

Source Files and Header Files

Extended Source Files (#include is

just copying the contents)

Object Code (e.g., functions in

machine instructions, but mangled

name information available)

- In order to compile a C-file, dependencies can be missing. A C file can call a function that is not

implemented in it. This includes operating system APIs as well as functions you implement yourself in a

different file.

- In order to compile a file, however, the type information (signature) of all functions is needed. This can be

used to derive a name (called mangled name) under which the function needs to be provided from a

different C file or an external library

- In order to link a program, all names must exist. Otherwise you get a linker error

- If the program is an exetuable, it must contain exactly one main function. In general, a function with the

same signature is not allowed to exist more than once. A function with the same name, but different

arguments is allowed to exist. A function with the same name, but different return type is not allowed.

Notes

10

Example:

11

We will split now our basic program into two libraries, both with a joint header file, and the implementation

referring to the header file:

Complex Project Layout Example

12

Header File

13

Main C File with reference to Header File

14

First C file for Integer Implementation

Second C file for Float Implementation

Implementations

15

On Linux, you just create the same text files (use any editor you like)

And then

g++ -o <program name> -std=c++11 <list all c files to compile>

And run the program

./<program name>

If gcc is not found, try cc which

should find all compilers.

For MAC users, look at clang.

Example (Linux + Mac Users)

16

Default example on Linux

17

Using clang (default on Mac)

18

Chapter 3.1: C Language Elements

19

Things

Source File A file that contains the implementation of functions

Header File A small file that contains the signatures of external functions

Standard Library A library that contains all default functions like printf and is silently linked into all

programs

Project A definition of the files that have to be combined. Not part of C/C++, meaning varies

Actions

Compile To translate from C code to machine code, but not resolving external variables and

function calls. Input: C files, output .o files

Link To combine multiple object files into a library or executable resolving dependencies and

external symbols (functions or variables)

Debug Version A program that contains information that can be used to analyze it while it is running

and to react on fatal errors during runtime

Release Version A program that omits all the information needed for debugging and is, therefore, by an

order of magnitude faster

Cheat Sheet / Terms

All programs start in the main function which can be used in two forms (more forms maybe accepted by your

compiler, but should be avoided)

Main without arguments:

Main with arguments. Here, arguments can be given on the command line, but first, we need to learn about

strings in C, we will come to it later.

The return value signals information to the surroundings, e.g., the caller. According to POSIX, it should be

zero if everything is fine and non-zero in case of error. This is mainly used on Linux / Unix

The Main Function

21

The return value of main

22

Ways to interact with the return value on Linux

23

In C++, everything has to have a type and the types

can‘t change.

A type is a declaration of how much memory (in bytes) is needed and how the memory is interpreted (float,

integer, string, signed or unsigned)

An instance is refers to a value of a given type in memory.

An variable is a named instance of a type reserving the memory and behaving as expected (e.g., numbers

provide + and -, strings do not)

Every expression has a type.

Types

24

Type Keyword Bytes Range

character char 1 -128 .. 127

unsigned character unsigned char 1 0 .. 255

integer int 2 -32 768 .. 32 767

short integer short 2 -32 768 .. 32 767

long integer long 4 -2 147 483 648 .. 2 147 483 647

unsigned integer unsigned int 2 0 .. 65 535

unsigned short integer unsigned short 2 0 .. 65 535

unsigned long integer unsigned long 4 0 .. 4 294 967 295

single-precision floating-point (7 Stellen) float 4 1.17E-38 .. 3.4E38

double-precision floating-point (19 Stellen) double 8 2.2E-308 .. 1.8E308

All of these integer types can be used to declare variables, return types, constants and arguments. They

support all common operators (+,*,…), comparisons, etc. They are converted into each other in expressions

as needed. Coversions lowering accuracy should raise warnings. Float to Int is always truncating.

Modulo is written as a%b (a modulo b)

Fundamental Types and Their Interpretation

25

Explicit type conversion can be done (traditionally) using (<type>)

This should not be used in C++ unless you know what you are doing!

As integer conversions are truncating, we can write a round function as follows:

This example shall also remind you that type conversion is binding quite strongly. (see next slide),

Integer Types (ctd.)

26

This variant is wrong:

It takes the float parameter (maybe 25.5), turns it into integer (25), adds 0.5 (25.5) and converts this all

implicitly to integer for the return value (25)

Precedence of Type Conversion

27

In traditional C, a variable can be local to a function (allocated on the stack during invocation, not visible

outside the function, not existent before / after running the function). It is local, when it is declared within the

brackets making up the function.

In traditional C, a variable can also be global. Global functions can be shared by declaring them as

„external“ in header files. That is, in a C file, one declares

int veryGlobal;

In the header, one cannot write int veryGlobal; because then the symbol would be doubled. One can,

however, inform the compiler (similar to functions) that it should exist somewhere by writing

extern int veryGlobal;

In modern C++, variables can be even more local (and they are if you just use the C subset on Visual C++)

to the current scope (next slide)

Variable Scope

28

Variable Scopes

29

Chapter 3.2: C Control Structures

30

For the beginning, we need to implement sequence, conditional branch, and loops.

- Sequences are just concatenated statements;

first_thing();

second_thinkg();

x = third + as + an + expression;

Control Structures in C

Conditional Branch

32

The if statement evaluates an expression and

compares it with the integer 1 representing true.

Comparisons are available, but also logical operations

! (expr) = not <expr>

Expr1 && Expr2 Logical AND

Expr 1 || Expr 2 Logical Or

Lazy evaluation applies usually from left to right.

That is, for && if the first is wrong, the second is not

evaluated.

Other branch constructs exist… Later ;-)

A while loop has a boolean expression and

The body is run each time that at the beginning

of the loop the condition is true.

A break statement is available to break out

of a loop.

Note that if an if triggers a single expression or

statement, the braces { and } can be left out.

Loops

33

As C tries to be very near to a machine,

the for loop looks a bit complicated at first.

It contains three expressions.

- Initialization expression to be run before the loop

- Test to be tested before each loop body

- Loop Update to be run after each loop body

This is very flexible as they can be empty. But first a default

for loop. Here i++ just increments by one.

If you want the loop counter to remain visible (e.g., if you have

smart break statements), you can move the int out of the for loop

scope.

A while loop can be written as a for like so:

The universal for loop

34

A C function has a return value. The special type void (0 bytes) is used to declare that the function does not

return a value. A value is returned by using the keyword return which can be used without brackets (it is not

a function call). Brackets, however, don‘t harm as they just „bracket“ the expression.

Functions

35

Starting to Work with C/C++ is a real challenge. But when you master it, you are able to learn all

programming languages with ease.

Some practical tips:

- Try to compile as often as possible (maybe after writing one line, F7 in Visual Studio)

- Always read the first error first. Many times, an error implies hundreds of messages out of which only

the first one is actually relevant.

- Learn the types table and implement some of the algorithms we have seen so far.

- Formulate questions carefully (do screenshots in case you have a really complex matter)

- If you really fail on something, create a minimum package to share (e.g., the source code and the

project) such that we can help you. Maybe put it onto Google Drive or somewhere else and put a link into

Etherpad. We will try to help (in the given ressource constraints that 2 PhDs take care of 200 students).

Task

36

3.3 Arrays and Pointer

37

Recall, that variables in C reserve memory of a given type and remain uninitialized until a first value is

assigned.

int variable;

…

variable = 3;

One can as well directly initialize the variable in the declaration

int variable=3;

Such variables are usually placed on the stack and are available / defined within the current scope (global

variables can be defined outside function. Every variable inside a function is scoped to the function and its

lifetime ends as soon as the function ends.

Variables

In the C family of languages, arrays can be declared with brackets. For example

int myArray[10];

Declares and reserves memory for an array with 10 elements number from 0..9 on the stack.

Warning: myArray[10] does not belong to the array!

Example:

for (int i=0; i< 10; i++)

myArray[i] = 2*i;

Initialization of Arrays is impossible in C, but the C++ extension of brace initilaiztion can be applied in

modern compilters

int myArray[] = {1,2,3,4}

Arrays

Example with Loops

40

Warning! As C is optimized for performance, there is no bound checking in place. That is, if you try to access

an element with an index larger than the reserved space, you end up somewhere else in the stack, for

example the following snippet works.

Sometimes (depending on the memory

layout, this code could as well crash

with an access violation).

Out of Bounds

41

Access Violations

42

On Linux and Mac, this exception is known as SEGFAULT (segmentation fault) and is

one of the more difficult to repair problems. For deeply learning about memory

debugging, consider learning about valgrind. (Beyond the scope of an introduction!)

In fact, in classical C, an array is not stored as a container with a certain length. Instead, we store a pointer

to the beginning of the array. The length of the array needs to be taken care from the source code.

Note that this is one of the reasons why arrays are seldom used in high-level C++ code. There are

alternatives!

The memory model of a basic computer is a global array (just like the Turing machine).

A location in this array is represented as an unsigned integer (64 bits for 64 bit machines).

C allows to reference each memory address with a type.

 We can interpret any location in main memory as a certain type like int, char, long, double.

 We can use the left and right neighboring cell in some situations. This is how arrays are built.

How does this come to be?

43

Basic Memory Model

44

Byte 0 Byte 32G
…

Stack Cells (A stack is represented by the start and grows towards 0

A two byte variable outside the stack („on the heap“); we learn how to

declare those in a minute

A two-byte variable on the stack (this is just a local variable)

In order to be able to access the red variable, we will usually have a local variable 64 bits

essentially containing the location of the start of the memory of the variable. Such a variable

is called a pointer.

Pointer Index

A variable is declared as in

int var = 4;

A pointer is declared as

int *p;

A pointer should be initialized to point to the start of memory (which is always „invalid“)

int *p=NULL;

The adress of a variable can be generated with the & operator:

p = &a;

Afterwards ,the value of a as an integer can be referenced to as *p („where p points to“). This is called to

dereference a pointer.

*p=8;

Pointer

45

Pointer Example

46

Pointers as Numbers

47

Result

48

4 byte spacing of array elements

a has a higher number than b

(declared before a)

In practice, this means that arrays and pointers can be identified. In fact, the array variable itself is easily

interpreted as a pointer to the beginning.

As pointers are numbers, one can compute with them (pointer arithmetics) to compute location of

neighboring values.

In fact, the [-] operator is defined for pointers and what it does, is it advances the pointer by the number in

bracket times the size of value type of the pointer and returns a variable which „references“ this location.

Arrays are Pointers

49

Pointer Arithmetic

50

Chapter 3.4

Strings in C

(note that C++ strings are different and maybe better)

51

- In C, a character is represented as an unsigned char, which is an integer type ranging from 0..255.

- The meaning of the character follows the ASCII table.

- A string in C is now represented as a char * to the beginning of the string. The end of string is (by

agreement) marked with a NULL character (\0)

- Traditionally, char* was used, but unsigned char * is more correct.

- Constants in the code must be const char * (can be some warnings or error messages when you start.

The const just means that this must not be changed by code).

See the following slides for example code.

C strings: a playground for pointer arithmetics

52

A simple string printing out characters and their codes

53

Copying a string (see strcpy as well)

54

Conditional Replacement of Characters (Example)

55

Basic functions for manipulating C strings are given in string.h

The problem here is that with „bad“ input strings, for example very long ones, one might end up with

problems. If the strings come from untrusted sources (files, users, network, Internet, etc.), a family of

functions has been proposed that solves these issues.

Therefore, some additional functions (with an n in the name) take the maximal length of the output and

ensure zero-terminated strings.

https://www.cplusplus.com/reference/cstring/

The string library (string.h)

56

https://www.cplusplus.com/reference/cstring/

String Library (as defined in C++ standards)

57

String Library (as defined in C++ standards)

58

strcat concatenate two strings.

strchr string scanning operation.

strcmp compare two strings.

strcpy copy a string.

strncpy safely copy a string

strlen get string length.

strncat concatenate one string with part of another.

strncmp compare parts of two strings.

Additionally, from stdio.h the function snprintf is helpful:

https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf

Most important

59

String Library (I)

60

String Library (2)

61

Chapter 3.5 References

62

Sometimes, pointer dereferencing (*-operator) and pointer arithmetics are annoying. Can we have a concept

in which a variable name is assigned to the memory location of another variable, but without using pointers?

In C++, therefore, references are introduced.

A reference behaves like the type itself, pointers are not involved.

A reference can be assigned the location it refers to only during construction (afterwards it behaves like the

original variable)

It is not possible to create references to arbitrary values as they might not exist in memory at all times.

References are mainly used as parameters of functions, but can be useful otherwise as well.

References – Better Pointers?

63

A reference is declared using & in the declaration (not in an instruction, where it generates a pointer).

It makes the variable a placeholder for the input. For example (call by reference, the function does not get a

copy of the parameters, it can change them)

Reference

64

If you return a reference, the value is not copied to the stack, but refers to the original one.

This can be used in advanced patterns like method chaining and accessor functions.

In this case, the function call can stand on the left hand side of an assignment.

Returning a reference

65

References can be very helpful an have an extreme impact on code performance. Here is a basic guideline

for how to declare the parameters of a function you are writing.

• If you want to change the values of the parameters, call by reference

• If you don‘t want to change the values of the parameters

• Call by value if they are small (few bytes)

• Call by const reference otherwise (avoids a costly copy operation of huge data)

Examples will follow in the tutorial.

When to use references

66

