
Computational Foundations I

Martin Werner

Dec 02, 2022

CONTENTS

I Basic Knowledge 3
1 The Disk Operating System (DOS) 5

2 Automation in Windows 9

3 Microsoft Windows 11

4 Unix, Linux, and POSIX 15
4.1 POSIX . 16
4.2 Linux as seen by a user . 18
4.3 Example: Processing data in a Linux environment . 19

5 Imperative Programming 23
5.1 A Robot Model of Intrinsic Instructions . 23
5.2 Procedures . 24
5.3 Ports and Functions . 24
5.4 Control Structures . 25
5.5 Scopes . 25
5.6 Memory . 26
5.7 Variables . 26
5.8 An example robot program sketch . 27

6 The C and C++ Language 29
6.1 Introduction . 29
6.2 Functions and Signature-based Selection . 31
6.3 Code Libraries . 33

7 Turtle Graphics Example 35
7.1 Implementation in C . 35
7.2 Visualizing the Turtle Graphics . 37
7.3 The Makefile . 38

8 OpenGL - The Core Computer Graphics API 39
8.1 Installing GLUT (Windows Example) . 39
8.2 Installing GLUT (Linux) . 40
8.3 Our first project (Visual Studio) . 40
8.4 A Reasonable Example . 42
8.5 Further Reading . 43

i

II Tutorial Assignments 45
9 Task Sheet 1: Niki the robot 47

9.1 Learning Outcome . 48
9.2 Task 1: Doubling Numbers . 48
9.3 Disclaimer . 48
9.4 Task 2: Staircase . 48
9.5 Task 3: Storage . 49
9.6 Task 4: Waste Collection . 49
9.7 Task 5: Tunnel . 50
9.8 Task 6: Signs in the world . 50

10 Task Sheet 1: Basic C and C++ 51
10.1 Task 1: PrettyPrint . 51
10.2 Task 2: PrettyPrint 2 . 51
10.3 Task 3: PrettyPrint3 . 52
10.4 Task 4: Calculus Primer . 52
10.5 Task 4.2: The Riemann Integral . 52
10.6 Task 4.3: The Discrete Differential . 53
10.7 Task 5: Prime Numbers . 53
10.8 Task 6: More on prime numbers . 53

11 Task Sheet 2 (Lectures 4-6) 55
11.1 Task 1: Loops . 55
11.2 Task 2: Binomial Coefficients . 56

12 Learning Tasks 59
12.1 Category 1: General Advice Qualification Goals . 59
12.2 Category 2: Routines . 59
12.3 Category 3: In-Depth Knowledge . 59
12.4 Category 4: Computer Science Excellence (out of scope!) . 60

ii

Computational Foundations I

Download as PDF
Computational Foundations is a two-semester course in the aerospace bachelor and aims at laying out fundamentals of
working with computers including aspects from theoretical computer science, computer engineering, and programming
selected for their relevance in aerospace engineering.

Material

• Lecture 1: Basics / States / Operating Systems / Command Line
– The Disk Operating System (DOS)

– Microsoft Windows

– Unix and Linux

• Lecture 2: Imperative Programming
– Imperative Programming

– C++ - First Steps

• Lecture 3: Imperative Programming II
– Tutorial: Niki the Robot

– Script Algorithms

– Slides Recursion

– Slides Algorithms

– Slides C/C++

– Solution to Riemann Integral

– Whiteboard Complexity

– A Selection of Introductory Programming Challenges

– Note that pointers are not yet taught.

• Lecture 4: Loops and Recursion
– A Set of Loop and Recursive Programming Tasks

– Whiteboard Riemann Integral

– Learning Tasks

– Turtle Graphics Project

• Lecture 5: More Loops, Recursion, and some Graphics
– OpenGL and Libraries Example

– Recursive Fractal Turtle Graphics

Time Plan

This lecture is organized into thirteen units out of which you can influence quite a few depending on the previous knowledge
in the group and the interest.

CONTENTS 1

Computational Foundations I

First the dates in 2022/23:

Date Topic
18.10.2022 Lecture
25.10.2022 Lecture
01.11.2022 Public Holiday
08.11.2022 Lecture
15.11.2022 No Lecture (TUM regulation)
22.11.2022 Lecture
29.11.2022 Lecture
06.12.2022 Lecture
13.12.2022 Lecture
20.12.2022 Lecture

Christmas Break

10.01.2023 Lecture
17.01.2023 Lecture
24.01.2023 Lecture
31.01.2023 Lecture
07.02.2023 Lecture
———– ——————–

2 CONTENTS

Part I

Basic Knowledge

3

CHAPTER

ONE

THE DISK OPERATING SYSTEM (DOS)

In order to fully understand Microsoft Windows and in order to get to advanced usage capabilities, it is unavoidable to
understand, howMicrosoft Windows has emerged. In the old days of computing, a company namedMicrosoft introduced
an operating system known as Disk Operating System (DOS) which was used to run most personal computers in these
days. From a user perspective, this operating system did all the work of starting up the computer and configuring hardware
and running programs. Therefore, a command line was designed and equipped with programs and technology to support
basic computing tasks.
MS Dos was a single tasking operating system (except TSRs, which have been small programs that were able to run in
the background). This dictates the logic under which interaction with MS Dos is cut into sequential steps. In a nutshell,
the computer tells the user that it waits for an instruction by showing a command prompt.

C:\>

The user is then supposed to enter a command which then runs a program or a builtin instruction. Only four types of
information are available to both the user and programs:

• The current working directory (CWD) which is a combination of a drive and a folder relative to which all file
operations are performed

• A set of environment variables, such as the %PATH% variable
• The name of the program and a space-separated list of arguments to the command

In this context, the DOS provided a set of commands for working with these states and software vendors could provide
additional programs. While DOS can be considered history, all current Windows versions include a Command Prompt
feature, which provides a DOS-like command line to perform tasks on Windows computers. For an overview, we list a
few DOS commands and ask you to explore them yourself on a Windows computer (or in FreeDOS in a virtual machine
like Virtual Box).
Each command starts with the name of the command or program and a set of arguments where arguments starting with
a “/” are considered switches that just influence the behavior. Many file-oriented commands allow you to use wildcards.
A wildcard in a string matches zero or more character (*) or exactly one unspecified character (?). For more clarity:

• stat*.bat would match status.bat as well as stat.bat
• data?.dat would match data0.dat, but not data10.dat

Basic programs
• <drive letter>: to change the drive
• CD to change the directory
• DIR to list a directory, consider switches /P and /S which change the behavior
• MD to create a directory
• RD to remove a directory (only if empty)

5

Computational Foundations I

• TREE shows all files below the current working directory
• ATTRIB show and modify attributes like write protection on files
• COPY is used to copy files
• DEL deletes files (synonymous with ERASE)
• EDIT provides a simple editor (EDLIN before MS DOS 6.0)
• FIND searches for a string in a file
• MORE pages a file to the screen
• MOVE moves a file to a different location
• PRINT is used to print a file
• REPLACE works like copy but replaces the file in the target
• TYPE outputs the whole content of the given file
• XCOPY extends COPY to be able to copy whole directories and trees
• CLS clears the screen
• DATE shows and modifies the date
• TIME shows and modifies the time
• ECHO is used to control whether commands are shown or not (mainly in batch files)
• FDISK is used to set up hard disks (partitions, etc.)
• FORMAT organizes a file system on floppy disks or hard disk partitions
• HELP shows help for a dos command (use it in the tutorial!)
• SET shows configuration information and environment variables and modifies them
• VER shows the version of DOS in use

With these commands, it is possible to organize a computer quite nicely yet remaining simple and self-explaining. Another
interesting aspect about DOS which is visible in modern versions of Windows is the fact that file names were heavily
restricted in early versions allowing 8 characters for the file name and 3 characters for the file name extension separated
with a dot. Extensions have always been used to mark the type of file, for example article.txt was a text file suitable for the
edit program while word.exe was a program known as Word which could be run by writing the command word (without
the extension) when in the same directory or when the directory was mentioned in the PATH variable.

Note: Assignment 1:
• Install VirtualBox and run FreeDOS inside
• Using the FreeDOS command line, create a folder structure representing Germanys federal structure. Start by
creating a folder Germany, within this folder, create one for each state.

• In each state, create a file capital.txt and write into it only the name of the capital of the state in one line (be sure
to end the line)

• Show the tree (and submit as a solution) using the command line
• (Advanced) Output all member states
• Learn about the redirection of output using the > pipe

6 Chapter 1. The Disk Operating System (DOS)

Computational Foundations I

• Look around on your Windows PC if you have one. Where is your data stored technically, where is Documents
located? Where are Downloads? Try to find out about this by just running the “Command Prompt” or “Eingabeauf-
forderung” in German language.

• Create a file on the Desktop of your Windows Computer, use the extension .txt and write Hello Windows into it.
Then open the file with the Windows GUI which should spill up your favourite editor.

DOS used drive letters A, B, C, etc. to distinguish different disks. In the very early days, one typically had no hard drive
in an MS DOS computer, but one floppy disk. This disk was known as A and all the life was taking place in A:>. A
bit later, many computers came up with a second floppy drive. Now, the drive A was used to start the operating system
(DOS) and provide commands, while B:> was used to store data. As floppy disks are sometimes usable (when a valid
disk has been inserted) and sometimes unusable, both letters are reserved up to today. Typically, the first drive letter
assigned to hard drives or other modern devices is, therefore, C:>. In almost all versions of Windows today, Windows
is installed on a drive with letter C. If the main drive has more partitions, drive letters are used sequentially, such that a
two-partition setup often has a drive D:>. On many other computers, D: already refers to some CD drive or USB stick.
In a nutshell, drive letters are assigned along the alphabet and as the first two letters are reserved for floppy drives, the
first letter in every-day use is C. As a consequence of this unknown dynamics, it has become a tradition to map the first
network drive with the letter Z and to continue backwards (if you are in a network-enabled environment). Furthermore,
some companies have started to use a drive called H like “Home” for the home drive of a user.

Note: Assignment Two: Install Windows (at least once)
Windows Installation Tutorial. When you start working withWindows a lot, you will face the situation that your computer
is not working properly anymore. In this tutorial (accessible only for people with a valid Windows license), we will install
Windows into a virtual machine to train the procedure. In order to help you for your future, we ask you to do this on a
virtual disk of 20 GB (use a FCOW disk to save space) which you partition into three disks: Disk C (the main Windows
disk) shall use 10 GB, while a drive D of 5 GB and a drive E of 5 GB shall be available as well. Therefore, you can use
the partitioning tool part of the Windows installer. We will use Windows Education 11, but the procedure is not much
different for any (unmodified) Windows.

7

Computational Foundations I

8 Chapter 1. The Disk Operating System (DOS)

CHAPTER

TWO

AUTOMATION IN WINDOWS

Since the beginning (including MS DOS), the builtin functionality can be used to automate routine tasks to some extent.
In Windows, batch files are being used. In their simplest form, batch files just list a sequence of commands to be executed
one after another. But batch files can have more aspects such as looping over files, asking for user input and other advanced
patterns. As many of our students will be exposed to a Windows with no access to advanced scripting software, it is worth
knowing some basic aspects of how to write batch files on Windows.
As said, a batch file is just a text file in ASCII format and each row of the file represents a command which you could as
well type into the command prompt. However, it gets more interesting if one realizes the following three functionalities:

• Disabling the output
• Looping over files
• Using arguments given to the batch file

The first aspect is simple, but important: in basic batch files, each command is first output before the command is executed
and the output of the execution is output. This means that it is a bit tricky to have concise output from a batch script
which is really useful for the user. In a batch file, the output of a command can be suppressed by prefixing it with @ why
it is good practice to start all batch files with a line

\@echo off

The output of this line is suppressed (it would typically output “ECHO is disabled”) and the output of commands is
disabled for the remainder of the script.
Now, it is very common that batch files are used to automate annoying commands to avoid typing and thereby avoiding
typos as well. Imagine you are working on satellite images and you have downloaded 1,000 scenes from Sentinel 2. As
you want to create a web map, you decided to reproject all of these files from their own projection into a WebMercator
projection (EPSG 90009001). You figured out the right parameters for letting gdal_warp utility doing your work, for
example

gdal_warp \<scene\> -t_srs ... (please figure it out yourself!)

Then, you can use a batch file like this one:

\@echo off
for %%f in (*.tif) do (
gdal_warp \<magic parameters here\> %%\~nf output/%%\~nf
)

This file takes all files with extension tif in the current directory and gives them as input to our magic gdal_warp command
while putting the result into the same file, but in a directory output. Hence, be sure to have this directory created (or make
the creation of this directory part of the batch script itself). In this way, you can now have a lot of coffee or go to bed
while your computer is working through your archive of data.

9

Computational Foundations I

Note: Assignment Three: Writing Batch Files
Create a batch file which reproduces the result of Assigment One. A batch file in Microsoft DOS andWindows is a simple
ASCII text file with an extension of .BAT. Those files can be run from the command prompt just like EXE files by giving
their name without extension. Use the @ECHO OFF as the first line to suppress the output of the individual programs.
Explore on your own using the Internet, how one can get input from the user into a variable, how one can loop over files
running a certain command for each file.

Note: Assignment Four: Learn some Latin
We will write a batch file program to train latin vocabulary. Therefore, we create a file with the latin name containing the
translation (followed by a newline). Then, try to write a script that first selects a file at random (or any other way) and asks
(by showing the filename representing the latin vocabulary). Then ask the user to input and (!maybe!) try to compare
the user input with the file contents at least roughly. Note that this can be really tricky in BATCH programming, so any
approximate solution is appreciated.
*Just some tips: To make it less complex, the solution to this task was not comparing the results, but rather showing the
user input and the translation from the file. Further, we create two Batch files: one which loops over all files and another
one which is called with the filename and presents a short dialog. *

Note: Assignment Five: Reproject Sentinel Scenes
Download a handful of Sentinel scenes from different locations, install GDAL and use the gdal_warp command line utility
to bring all the files into the same projection.

10 Chapter 2. Automation in Windows

CHAPTER

THREE

MICROSOFT WINDOWS

TheWindows operating system has then emerged as a graphical user interface (GUI) on top of DOS. In its early versions,
it was a graphical file manager, but the most important innovation was available with Windows 3.x, namely, an interaction
scheme in which the graphical screen is subdivided into rectangular Windows with the following properties

• Windows can overlap each other
• Exactly one Window is active
• The active Window is in the front (fully visible)
• Windows can be resized and moved on the screen
• Windows provide buttons for minimizing, maximizing and closing the Window

In fact, a Window today looks like this editor window from the integrated Windows Editor Notepad:

Windows typically have more standardized aspects such as the following ones. Each Window has a Title line which
contains an optional Icon (which is a menu) followed by a text (the Window title) and the three buttons on the right for
minimizing, maximizing and closing the Window. Below the Title, a menu bar is located in which multiple text fields
are displayed. When you click on them, a window is opened and can be navigated to send a command to the application.
The bottom line (optional) is known as a status line and typically contains a few controls, at least one text. The remainder
is called the Client Area and is used by the application.

11

Computational Foundations I

In order to give you a more in-depth understanding, let us look at the principle of writing programs for MS Windows. A
normal program is started, this one asks the Operating System to open a window with certain properties (size, location,
etc.). One of these properties is a function which is then called by the operating system with events such as the following
ones:

• WM_CREATE: Is sent when the Window is created
• WM_DESTROY: The window is destroyed
• WM_MOVE: The location has changed
• WM_SIZE: The size has changed
• WM_ACTIVATE: The window has become active
• WM_QUIT: The X has been clicked (or an equivalent hotkey was activated)
• WM_PAINT: Draw the client area (however this is done)

Without expecting everyone to understand completely at the first time you read this article, here is a complete Windows
API example drawing a rectangle. It is written in the C language we will learn, and serves as a primary example. It has
been made available at Github and is referenced by the MSDN as well MSDN Article on WM_PAINT

#ifndef UNICODE
#define UNICODE
#endif

#include <windows.h>

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

int WINAPI wWinMain(HINSTANCE hInstance, HINSTANCE, PWSTR pCmdLine, int nCmdShow)
{

// Register the window class.
const wchar_t CLASS_NAME[] = L"Sample Window Class";

WNDCLASS wc = { };

wc.lpfnWndProc = WindowProc;
wc.hInstance = hInstance;
wc.lpszClassName = CLASS_NAME;

RegisterClass(&wc);

// Create the window.

HWND hwnd = CreateWindowEx(
0, // Optional window styles.
CLASS_NAME, // Window class
L"Learn to Program Windows", // Window text
WS_OVERLAPPEDWINDOW, // Window style

// Size and position
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

NULL, // Parent window
NULL, // Menu
hInstance, // Instance handle
NULL // Additional application data

(continues on next page)

12 Chapter 3. Microsoft Windows

https://github.com/microsoft/Windows-classic-samples/blob/18cbd05ee44455cd7552804dcf2c9d6db619b412/Samples/Win7Samples/begin/LearnWin32/HelloWorld/cpp/main.cpp
https://learn.microsoft.com/en-us/windows/win32/gdi/wm-paint

Computational Foundations I

(continued from previous page)

);

if (hwnd == NULL)
{

return 0;
}

ShowWindow(hwnd, nCmdShow);

// Run the message loop.
MSG msg = { };
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return 0;
}

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

switch (uMsg)
{
case WM_DESTROY:

PostQuitMessage(0);
return 0;

case WM_PAINT:
{

PAINTSTRUCT ps;
HDC hdc = BeginPaint(hwnd, &ps);

// All painting occurs here, between BeginPaint and EndPaint.
FillRect(hdc, &ps.rcPaint, (HBRUSH) (COLOR_WINDOW+1));
EndPaint(hwnd, &ps);

}
return 0;

}

return DefWindowProc(hwnd, uMsg, wParam, lParam);
}

This very clearly illustrates what is happening: The program creates a new Window which refers to a function in our
program (WindowProc) and this function is called by ourselves with all messages we can Peek and Dispatch in our
main program.
The nature of an event-driven system is that after a lot of initialization, the main progress of the system follows an event-
driven nature: an ordered sequence of information (called events) will dictate the behaviour.
By the way, this is also the core reason why sometimes windows are hanging and not reacting: This happens, when
messages like WM_PAINT or WM_CLOSE are not delivered, because the event loop is not running properly. Windows
typically blurs out the Window and shows a dialog about this problem.
As a consequence, good programs will have to make sure that all messages are quickly handled maybe by making other
parts of the program proceed asynchronously, for example in a thread.
It is interesting to see how a concurrent impression has been created by using the graphical user interface, which is

13

Computational Foundations I

inherently non-parallel: there is only one active program at a time.

14 Chapter 3. Microsoft Windows

CHAPTER

FOUR

UNIX, LINUX, AND POSIX

The Linux family of operating systems has been improving in importance in the last decades. The project started as an
illustrative implementation of a simple UNIX kernel on top of the 80386 computer and is now the leading operating
system in terms of global impact.
In order to understand Linux, one has to look back into the history as well. Linux is modeled after Unix which is a family
of operating systems developed for mainframes. Such computers have been very expensive and available long before the
personal computer was available, but a single UNIX mainframe was used by many members of a company.
Hence, topics like user management, access control and parallel execution of different things (for different users) have
been at the heart of Unix development, while the simplicity (despite all risks) of the DOS immediate mode was not
accessible.
At this point, before looking into the guiding principles of Unix and Linux, we can mention a name here: the basic Unix
was mainly developed by Ken Thompson and Dennis Ritchie who has also had huge impact on the development and
success of the C programming language. In fact, Unix has been implemented mainly in assembler (a rather raw machine
language with almost no abstractions), but later translated in large parts into the C language. And this is one of the earliest
predecessors of the programming language we will focus on.
Furthermore, a few principles have been fixed in the early days and have proven successful enough not to be changed that
much in the years to come. This group of decisions is referred to as the Unix philosophy, which we will revisit when
talking about software and programming.
A famous formulation of the Unix philosophy is due to Douglas McIllroy:

• Write programs such that they do only one thing and they do it well
• Write programs such that they can work together
• Write programs such that they work on textual streams as this is the universal interface

This is often oversimplified to
Do only a single thing at a time and do it well

Or (more or less the same) as the KISS principle:
Keep it simple stupid.

There is a lot to these aspects and we will learn a lot about it. More down to the point, Mike Gancarz gives the following
list

• Small is beautiful.
• Make each program do one thing well.
• Build a prototype as soon as possible.
• Choose portability over efficiency.
• Store data in flat text files.

15

Computational Foundations I

• Use software leverage to your advantage.
• Use shell scripts to increase leverage and portability.
• Avoid captive user interfaces.
• Make every program a filter.

This will guide our gentle introduction to Linux in the sequel.

4.1 POSIX

Unix has led to a joint understanding of how computers should work and it has been very successful. But it has also
quickly become an area of debate (see Unix Wars). In order to unify and converge the market, a new standard has been
carefully designed and developed (ISO/IEC/IEEE 9945) under the name POSIX.
This standar describes clearly and independent from a concrete implementation defintions of terms, the system interface
(concretely in C language including header files), and the command line interpreter and a list of tools.
When learning C (or any other modern language), one will often touch exactly this standard even in a non-Unixoid
environment (like Windows).
We will now skip over the definitions and the header files, as they naturally appear when learning programming, but jump
right ahead to the list of mandatory utilities that you can expect any unix-like operating system to provide:
For a complete list, please refer to https://pubs.opengroup.org/onlinepubs/9699919799/idx/utilities.html
For our first interaction with these systems, we selected

• ar (nowadays often tar for tape archiver)
• at
• awk
• basename
• bc
• cat
• cd
• chgrp
• chmod
• chown
• compress (nowadays, bz2 and gzip)
• cp
• cut
• date
• dd
• df
• diff
• dirname
• du

16 Chapter 4. Unix, Linux, and POSIX

https://pubs.opengroup.org/onlinepubs/9699919799/idx/utilities.html

Computational Foundations I

• echo
• ed
• env
• ex
• expand
• expr
• false
• fg
• file
• find
• fold
• getopts
• grep
• head
• iconv
• id
• jobs
• join
• kill
• ln
• ls
• man
• mkdir
• mkfifo
• more
• mv
• nl
• paste
• patch
• printf
• ps
• pwd
• read
• rm
• rmdir
• sed

4.1. POSIX 17

Computational Foundations I

• sh (nowadays often bash)
• sleep
• sort
• split
• tail
• tee
• test
• time
• touch
• tr
• true
• ulimit
• umask
• uname
• uniq
• unlink
• vi (nowadays vim)
• wait
• wc
• who
• xargs
• zcat (gzcat, bzcat)

Note: Install a Linux, preferably Debian (with no tasks selected, video follows), and login to the system with the user
account you created during installation. Then, inform yourself about the commands using the man command.

4.2 Linux as seen by a user

In order to understand Linux, we need to understand the command line version of it. With Linux being a multiuser
operating system, our adventure starts with logging in to Linux by giving a username and its associated password. Then,
we end up with a command line, most typically running the Bourne Again Shell (bash).
Similar to the DOS command line, the system now waits for your instructions and gives you some state information like
the current working directory (PWD on Linux, accessible with the pwdcomamnd). Again, you can now use the programs
given to start working with a Linux computer.
First, we will have to navigate the system and in Linux there is no concept of drive letters. Instead, there is one file system
root (/) and from there the journey begins.
We can move around by using cd, we can as well use the special directories . to refer to the current directory and .. to
refer to the parent directory in the relevant contexts.

18 Chapter 4. Unix, Linux, and POSIX

Computational Foundations I

Note: Navigate to the main directory, then from there into the bin directory. This directory traditinoally holds user
programs. By using a pipe character, you can make the output of a program becoming the input of another such that ls
| less will let you page through all programs in the installation.
Navigate to /home. Show all directories using ls. This should now have one directory per user. Enter whoami to find out
your user name.
Navigate to /etc, where Linux configuration is held. All programs should keep their configuration there as a plain text file.
Look at the file /etc/fstab using an editor of your choice (vi, vim, emacs, nano).
Navigate to /proc. This holds kernel information and files to interact with the kernel. Look at /proc/meminfo,
/proc/partitions and /proc/meminfo to find some information about your computer.

4.3 Example: Processing data in a Linux environment

As long as you stick with the Unix principles, Linux provides sufficient tools for 99% of your everyday tasks as a data
scientist. No advanced software or programming is required in this context.
In order to illustrate the line of thinking, let us perform a rather simple task: count the words in the definition (RFC) of
the HTTP protocol available from RFC

curl https://www.rfc-editor.org/rfc/rfc2616.txt > 2616.txt

will just download the document. To simplify the remainder, we create a local copy, so be sure to be in a reasonable
directory (maybe create one) first.
In order to find the most frequent word, our task is now to break it down into individual words. We do this by relying on
the tr tool. Read the man page, but we just turn every space into a newline:

cat rfc2616.txt | tr " " "\n"

In this command, the file is first output to stdout, but this standard output is bound to the standard input of the tr command.
This takes every space (first argument) and turns it into a newline. The output is ugly and long (would keep scrolling for
quite some time), hence, we can rely on head to see part of it

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | head -10

Network
Working
Group

martin@martin:~/lecture$

Okay, this looks nice, but empty lines will be dominating (this happens, because there are a lot of spaces in the document
for layouting page numbers). Let us get rid of empty lines as follows (this is tricky, we will discuss this in the tutorial)

4.3. Example: Processing data in a Linux environment 19

https://www.rfc-editor.org/rfc/rfc2616.txt

Computational Foundations I

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪head -10

Network
Working
Group
R.
Fielding
Request
for
Comments:
2616
UC

Now, we can start counting the words. The easiest way to do this is to sort the output using sort and then use the uniq
-c command to remove successive equal lines outputting the count of removed lines. Let us again limit the amount of
screen usage with head:

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪sort |uniq -c | head -10

1 "
1 ""
1 ""%"
1 "#"
1 "%
3 "("
2 ")"
1 ")">

26 "*"
3 "*",

Here, now the first column shows the number of times a string has been seen and we need to find the largest ones. We
do this by sorting again, but numerically using sort -g and reversing the direction. As we might be unsure whether it
works, we can again work on reduced outputs by keeping the head in the command.

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪sort |uniq -c | head -10 | sort -rg

26 "*"
3 "*",
3 "("
2 ")"
1 ")">
1 "%
1 "#"
1 ""%"
1 ""
1 "

Now, we are almost there: Let us now really look for the ten most frequent words in RFC 2616:

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪sort |uniq -c | sort -rg | head -10
3532 the
1579 a
1349 to
1298 of

(continues on next page)

20 Chapter 4. Unix, Linux, and POSIX

Computational Foundations I

(continued from previous page)

1006 is
829 and
773 in
661 that
653 be
550 for

martin@martin:~/lecture$

When you take your time to learn a few (if not all) of the core utilities (GNU coreutils), you can solve almost all problems
based on text files considerably faster than with any other environment.

4.3. Example: Processing data in a Linux environment 21

https://www.gnu.org/software/coreutils/manual/html_node/index.html

Computational Foundations I

22 Chapter 4. Unix, Linux, and POSIX

CHAPTER

FIVE

IMPERATIVE PROGRAMMING

Programming is the principles procedure of telling a computer what it is supposed to do and there are various programming
styles that can be used to program computers. However, the most widely used and most basic style of thinking of
computers is the paradigm of imperative programming.
Imperative programming matches very well the nature of computers being rather dumb and simple machines. In imper-
ative programming, the programmer takes the role of an imperator and provides instructions to the computer in a very
precise ordered form. These instructions come from a comparably small set of instructions which the computer must
support.

5.1 A Robot Model of Intrinsic Instructions

A very basic model of a computer can be imagined as a small robot that has two functions: turn right by an angle
of 𝜋/2 and go one step into the direction currently looking at. When building such a machine, one immediately also
designs a programming language which has two operations (we call them intrinsics, because they are the operations really
implemented in hardware). Let us give names to them: move for moving one step, and turn for turning left by 𝜋/2.
Now an imperative program is very much like a shell script: from the language that we have defined, we can create a text
file with one intrinsic instruction per line (this form of machine code is typically called assembler).
The program

move
turn
turn
move

would thus be interpreted as an imperative program like: first move into the direction you are facing, then turn to the left,
then turn again to the left, then move again.
So far, we have introduced a few concepts that should be highlighted:

• intrinsic instructions are those steps that a physical computing machine can perform immediately
• Each intrinsic instruction gets a name
• A series of intrinsic instructions can be written into a file which is an imperative program and interpreted as a
sequential instruction

Let us reflect a bit more on the situation of such a robot. In a certain sense, the previous program does define very precisely
what the robot is supposed to do, but neither in which state (location and orientation) it has been in the beginning nor
in which state it is afterwards. In fact, each operation is well-defined local to the robot (we know how the wheels are to
be moving), but not well-defined with respect to the robot in the world. Therefore, we would need to give or fix initial
conditions.

23

Computational Foundations I

For a real imperative program, these intiial conditions are the state that is held in the operating system about the program,
for example, the current working directory (CWD).

5.2 Procedures

A very typic additional definition in an imperative programming setting is the notion of a procedure. A procedure is an
imperative program (e.g., a sequence of instructions) such that this sequence can be referred to as a new operation in the
programming language. These are the so-called non-intrinsic operations.
For our robot, the following program

turn
turn
turn

means to turn left for three times. This, of course mimicks the result of turning right. In many programming languages,
there is a way to make this a new instruction of the language called a procedure.

proc turnright:
turn
turn
turn

Our minimal computer (the robot) with its tiny set of intrinsic instructions (move and rotate) can now be programmed
with a third instruction turnright

5.3 Ports and Functions

As a next step in the co-evolution of a computer and a programming language, one might want to be able to react on
real-world input, that is, something coming from outside the robot. For a robot, we could imagine a sensor that just tells
us whether the place we would move to is occupied or not.
That is, we extend our hardware with something we will call a port as it brings external information into the system. And
we will extend the programming language with an intrinsic function to model this port.
A function is a procedure in the sense that it can be run and that it can be built together from other instructions and
functions, but it returns a value. For the case of the port letting us experience the next location being occupied, this
return value can have two states: occupied or not occupied. Due to the huge impact of George Bool on the behavior of
such values (this British mathematician passed away already in 1864 long before digital computers have been realized),
any two-valued information in a computer is called a Boolean value or bool for short.
Concretely speaking, a function would now look like is_empty and when this is called it would turn into the current
value associated with the hardware port.
Now, with having ports, we can observe aspects of the surroundings (information exterior to the system itself) and in
order to react to them, two aspects are introduced in imperative programming:

• control structures and
• expressions

24 Chapter 5. Imperative Programming

Computational Foundations I

5.4 Control Structures

As we are still looking for a minimal programming language, we could imagine that our robot is supposed not to crash
with the surroudings, so maybe we just need to be able to make instructions like move conditional to the value of the
port.
This control structure is often nown as if .. then .. else .. More concretely, we enable the following snippet of source
code:

if is_empty then move else turn

This program would now always first check the condition of the if (run the intrinsic function) and if move is possible, it
would move and if not, it would turn in the hope that we can move afterwards.
To complete this exposition of minimal control structures, there is another common way to use boolean information in
imperative programs: to control the repeated execution of something. To this end, we introduce a loop called while:

while is_empty do move done

This means: as long as it is possible to move, continue moving. Note that by introducing a Boolean function, we would
typically also introduce the two Boolean values as constants for our programs. They are typically referred to as true and
false, hence, we can also write

while true do
while is_empty do
move

done
turn

done

5.5 Scopes

Another concept we silently introduced in the previous example is the idea of scopes. It is so common that within a
conditional branch or a loop multiple instructions need to be placed that we try to avoid to introduce a function for it.
Because if we had to, we would make things into functions that are used only once. As an alternative, a scope is introduced
which is a sequence of instructions that is taking the role of a single instruction like the loop body (what to do as long
as a condition is true) or the two branches of a conditional information (what to do when the value is true, what to do
otherwise).
Scopes have varying notations: sometimes with braces (C++, Java)

{
move
turn
}

sometimes with indentation (Python)

while true:
move
turn

sometimes with barrier words (Bash)

5.4. Control Structures 25

Computational Foundations I

while true do
move
turn
done

sometimes with round brackets (DOS/Windows BAT files)

(
)

But they all serve the same purpose of quickly and locally (on the screen in the right location) bundling together instruc-
tions.

5.6 Memory

Now, this very small robot can be extended further to interact with a physical world. As you may have noticed, the robot
is currently limited to a grid of points it can reach as we only implement movement by 𝜋/2. Assume now, we give the
robot some small things it can deposit into the grid cell he is currently in, and then also sense, and maybe even pick up.
That is, we extend the robot device with three functions represented by three intrinsics:

• a function deposit to put something into the current cell. Let us assume that it fails if the cell is already filled with
such an item.

• a function pick to clean the current cell
• a function has_item to check if the current cell is filled with an item.

With these three intrinsics, we can write a lot of algorithms and it can be fun. The interesting aspect is that the 2D world
provides us with the ability to have a concept like a variable.

5.7 Variables

A variable is an area of memory to hold information together with an interpretation associated with this information. For
the 2D robot case, a variable is often such a thing as a stack of items like in the following drawing. The identity of the
variable being the column in the grid while the value is the height of the stack.
In all imperative programming languages, the idea is similar: there is an axis of varying identity (think like rows in a
table) and each variable typically has a name (just a string) in order to use it. The second axis in programming languages
describes together the amount of space that is needed and the interpretation of the space. For example, you can have a
32 bit integer number (reserving 32 bits = 4 bytes of memory) assigned an identity like i or the same amount of memory
for a 32 bit floating point number f.
In high-level languages, it is not uncommon that variables are accessible by name during runtime, in lower level languages,
the names are only available during compilation and will be removed (for efficiency) while compiling the source code to
a executable.

26 Chapter 5. Imperative Programming

Computational Foundations I

5.8 An example robot program sketch

Assume we have our robot being on the lowest block of a tower of blocks each with a marker. Let us assume, we want to
interpret the height of this tower as an integer number, say h like height. Let us assume further, we want to compute the
value 2h. How would we proceed?

5.8.1 Algorithm Design

It is pretty clear and intuitive, how the robot can solve the problem: For each marked block, it creates two marked blocks
somewhere else. More concretely, let me lay down a proposal as follows:

• The robot starts on the lowest block of a tower
• The robot walks upwards to the highest block
• The robot picks up the marker (the tower has reduced in height by one)
• The robot goes down as long as markers are there (to the ground floor, so to say)
• The robot goes a step to the right
• THe robot walks up the tower as long as possible going to the first non-marked place
• The robot deposits a marker
• The robot goes up
• The robot deposits a marker
• The robot goes up
• The robot deposits a marker
• The robot goes down as long as possible
• The robot goes left (and is back in the state we want)

This needs to be repeated until we have taken the whole first tower.
Now, with this overview of the algorithm, we continue with an implementation strategy: there are quite a few things that
are semantically bounded in the sense that we can precisely and simply describe the state before and after a part of our
program. We could for example implement a procedure climb and use it twice: once to climb up the left tower and
once to climb up the second tower. Which tower to climb will just be based on the current location of the robot.
Our program skeleton grows slowly. In order to have a more narrative programming style, we introduce another idea of
programming, namely to put human readable text comments into the source code to illustrate some aspects and further
to use such comments to specify the expectations of implementations. Note that some modern programming languages
like C++ allow us to have such specifications during compilation in one or another way, but this is a rather new feature
and has not yet been voted into many standards. But the topic to keep an eye on is known as contracts.

function climb
precondition: the robot looks up
invariant: the robot keep the same X coordinate
postcondition: has_marker == false && has_marker @ below would be true
def climb:

needs to be written

Only with this contract information, it is possible to write a semantically correct climb function, especially the precondition
is requried: otherwise we would never know where we are going and the robot would need a compass or other means to
find its orientation.

5.8. An example robot program sketch 27

https://en.wikipedia.org/wiki/Design_by_contract

Computational Foundations I

Let us complete this procedure at least:

function climb
precondition: the robot looks up
invariant: the robot keep the same X coordinate
postcondition: has_marker == false && has_marker @ below would be true
def climb:

while has_marker:
climb

Hence, we can start writing a part of our program completely assuming we are in the start location (bottom of left tower):

climb
turn
turn
move
pickup
climb # this now climbs down

Now we realize that our first intuition that there is a climb function is not a very good and compact one as we also have
to climb down. So let us update the precodnition

function climb
precondition: the robot looks up or down

We can then extend the program by going to the side

...
turn
move
turn

Now, we are one block to the side looking up again. We can then deposit markers twice:

climb # go up
deposit # marker one
climb # go up
deposit # marker two
turn #look down
turn
climb # walk down
turn # look back
turn
turn
move
turn # up in origin

This completes our imperative formulation with a function climb that we have used multiple times making it much easier
to use. And we have seen that even our simple robot can do computations (doubling an integer number represented as the
height of a stack of markers).
In fact, similar robots are used to teach programming. For example, Richard Pattis has introduced Karel the robot with a
very similar set of features as our imaginary robot and Nikolaus Wirth has popularized this in Germany as Niki the robot
Actually, I found that Niki is still available in a historic Windows version and it runs at least on my Windows 11. So
please go ahead and have a look at Niki the robot.

28 Chapter 5. Imperative Programming

https://de.wikipedia.org/wiki/Niki_%E2%80%93_der_Roboter

CHAPTER

SIX

THE C AND C++ LANGUAGE

6.1 Introduction

The C programming language is the earliest form of the C and C++ family of programming languages. Nowadays, plain
C is used in kernel programming (e.g., the Linux kernel), in long-established code bases (e.g. postgresql), and in very
resource-constrained situations (e.g., embedded devices). It also presents a subset of modern C++ and (with very few
incompatibilities), every modern C++ compiler will compile plain C source code without any issues.
C and C++ are compiled languages and the compilation process is decomposed into a few tasks and translations that can
run independetly from each other. A modern GUI will orchestrate these steps, but it is mandatory to understand the
translation procedure to some extent when learning C++.
To keep things simple, a C project typically contains a bunch of C (extension *.c) or C++ (extension *.cpp) files. These
contain source code which a compiler can translate to object code. Object code is a form of machine code which is not
executable as it can be incomplete. In a second phase, all object codes are linked together with system libraries such that
all missing symbols are either coming from one of the object files of the project (hence, from your source code) or from
some libraries (either system or additional libraries).
In order to deal with the situation that your source code depends on functionality that is not available to the compiler,
because it is in a different file or coming from the operating system libraries, the C system provides a second type of file
in which only the signature of functions is defined. In this way, the compiler is able to generate code to understand the
libraries contents (it is kind-of a table-of-contents) well enough to compile the object file without looking into the actual
implementation.
Summarizing, we have C++ files (.c, .cpp) and header files (.h, .hpp) and we translate each soure code file (.c, .cpp) into
an object file (.o) in order link together all objects with libraries (.o, .lib) into an executable (.exe on Windows, just a name
on Linux).
With this theory, we are set to start learning the core language while already understanding a bit the files that we will
create.

6.1.1 Hello World

The following program is the first program you should learn and understand. It just prints out “Hello World” to the
screen. We will provide four information aspects in this script: the source code file (C++), a Makefile (which contains
the compiler arguments, at the moment just compiling, the output of compiling (could become interesting later) and the
output of running the program (note that the first line is the invocation for the case we are later giving arguments). In the
HTML version of this book, they are alternative with each other (tabs), in print, they are a bit lengthy, but in this way
everything remains complete.

29

Computational Foundations I

Source

#include<stdio.h>

int main(void)
{

printf("Hello World!\n");
return 0;

}

Makefile

all:
g++ -Wall -o 01_oldhelloworld 01_oldhelloworld.cpp

run:
./01_oldhelloworld

Build Output

Run Output

The file (like any other C++ files) first lists a few of header files to include (here stdio.h, defined in the POSIX standards,
see https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdio.h.html.
From this library, we are relying on the printf function to just output a string.
C is an imperative language and instructs a computer step by step, the entry point (where this processing starts) is a
special function called main (WinMain for Windows programs). Similar to what we have seen for the shell examples,
the n denotes a special character “new line” and makes sure that the program does not only output Hello World!, but also
continues to the next line.

Note: There is a very traditional incompatibility between Windows and Linux with respect to new lines: The Linefeed
(LF, n) is sufficient on Linux and Unix, but on Windows, lines are typically ending with CR-LF: first a carriage return
(CR, r), then a line feed (n).

The printf function is a powerful utility you can find in all programming languages and it can format various values into
the output, what we will cover a bit later, but it has also some downsides, mainly with respect to security and reliability.
Hence, printf is not used that much in safety-oriented code.

30 Chapter 6. The C and C++ Language

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdio.h.html

Computational Foundations I

6.1.2 Hello C++ World

In contrast to C, C++ has introduced the concept of an iostream which better reflects the nature of the standard input
and standard ouput. A stream is an object that can represent a file, a network connection, or just a terminal window and
one can stream various information into it. Therefore, an operator << is implemented, which takes variables, strings, or
whatever information. In this way, type conversion is safe and automatic.
In order to output data to the user, the C++ libraries define a header iostreams which define cout (C output), cerr (standard
error output) and cin (for input, used with a >> stream operator).
Hence, the same program written in idiomatic C++ looks like this:

Source

#include<iostream>

int main(void)
{

std::cout << "Hello World!" << std::endl;
return 0;

}

Makefile

all:
g++ -Wall -o 00_helloworld.out 00_helloworld.cpp

run:
./00_helloworld.out

Build Output

Run Output

6.2 Functions and Signature-based Selection

A little bit later, we will introduce many different types, but for now, we will look into how we can write our own
functions similar to the printf functions. A function is a unit of code that can be reused in your own code. Let us consider
the following already quite involved example:

6.2. Functions and Signature-based Selection 31

Computational Foundations I

Source

#include<iostream>

int doubled(int a)
{

return (a*2);
}

float doubled(float a)
{

return (a*2);
}

int main(void)
{

std::cout << "doubled(4)=" << doubled(4) << std::endl
<< "doubled(4.5)=" << doubled(4.5f) << std::endl;

return 0;
}

Makefile

all:
g++ -Wall -o 02_functionsignatures 02_functionsignatures.cpp

run:
./02_functionsignatures

Build Output

Run Output

While this example does not look that muchmore complicated, we introducedmany aspects that are difficult to understand.
Let us unroll it a bit. In C++, we are allowed to define multiple functions to have the same name. This is particularly
wanted, because sometimes, we can implement an algorithm just different if the arguments are of different types. In our
example, we define two times a double function, once it takes an integer argument (int, more on types later, it is just an
integral number) or a fractional number (float).
The compiler selects the right function in a complex procedure: For the first call, doubled(4), the type of the constant
4 is integer; hence, the system decides that the first function int doubled(int) should be called. For the second
call, we have a problem: if we remove the f from the argument, the compiler will tell us the call is ambiguous. What the
compiler actually means in this situation is that there is no function that strictly fits to the type (4.5 will be considered a
double value in the first place, not a float value, more on this later). Hence, the compiler would generate code and covert
the double into an integer if only the first function would exist, it would convert the value into a float if only the second
variant would exist. But the compiler has no precedence and raises an error. We resolved this by using a literal: for many

32 Chapter 6. The C and C++ Language

Computational Foundations I

constants, the type can be influenced by putting a character to the constant: 4.5f just means the value 4.5 as a floating
point number of the type float.

6.3 Code Libraries

In many situations, we will implement functions that we want to use from multiple programs. For example, we could
implement a sort function and use it in many different programs if we need to sort. In this situation, we need to put our
implementations into an isolated C++ file, create a header file with the so-called function prototypes which are just fixing
the name of the function and the type of the return value and of all arguments. In this way, we can include the header
in our own program (one which has a main), generate code using the functions in the compilation step, and then link
together our program with the library into a proper executable.
More concretely, we could move the two implementations of the doubled functions into their own C++ file:

Library

int doubled(int a)
{

return (a*2);
}

float doubled(float a)
{

return (a*2);
}

This one can now be compiled independently from everything else. Note that we do not even include iostream here,
because we are not using anything from iostreams. In order to make this available, we formualte a header

Header

#ifndef DOUBLED_H_INC
#define DOUBLED_H_INC
int doubled(int a);
float doubled(float a);
#endif

which contains the signature lines of the functions only (ending with a semicolon). It is valid, but not very widely used to
only give the types of the arguments such as

float doubled (float);

In order to make sure that these definitions cannot be loaded twice (not really needed here, but problems will be coming)
all of this header is protected from double inclusion using the preprocessor. All lines with # are processed even before
compiling and in order to avoid a double include (maybe you are including the file directly, but some library you include
also includes this header) we check if a symbol specific to the header (it is common to use the capitalized filename as
depicted) and if not, we define it (such that it is defined in the sequel) and close with #endif at end of file. In modern
C++, this can be replaced with a simple #pragma once in the beginning, but this is not that widely used today.
The remaining project then looks like this:

6.3. Code Libraries 33

Computational Foundations I

Source

#include<iostream>
#include "03_doubled.h"

int main(void)
{

std::cout << "doubled(4)=" << doubled(4) << std::endl
<< "doubled(4.5)=" << doubled(4.5f) << std::endl;

return 0;
}

Makefile

all:
g++ -c 03_doubled.cpp -o 03_doubled.o
g++ -c 03_library.cpp -o 03_library.o
g++ -o 03_library 03_library.o 03_doubled.o

run:
./03_library

Build Output

Run Output

A small thing to note here is that the include uses ” instead of < and >. This is an old relict and refers to being able to
include from the current directory. Libraries to be included from the compiler default location are included with <> and
things local to the project with “”.
Especially the Makefile (*.mk) is interesting here as I spelled out all three steps for you: compiling (-c) the library, then
compiling the main program part. Afterwards linking together the object files into an executable.

34 Chapter 6. The C and C++ Language

CHAPTER

SEVEN

TURTLE GRAPHICS EXAMPLE

Turtle graphics is a very basic graphics mode that has been used a lot in computer theory and education. It is a very
simple model in which computer graphics are generated by a small turtle (also known as the cursor) by drawing a long
and single connected line.
This can be used to learn imperative programming and recursive programming in a more visual way.
Some background is given on Wikipedia

7.1 Implementation in C

As C and C++ do not contain graphics functionality in the core of the language (though high performance graphics is not
far away through OpenGL and Vulkan and high quality graphics is provided by cairo, we again rely on gnuplot to help us
with visualizing scientific data.
The gnuplot script we are providing just requires a text file of coordinates. That is a file in which every line is considered
a point consisting of two floating point numbers separated by a space.
The special aspect here is that we are not going to use printf (though we could by using the piping mechanism like

./turtle > turtle-graphics.dat

but we open a file. Therefore, we rely on fopen. fopen returns a pointer (you don’t need to know what this is for now),
but it returns the special value NULL if something is wrong. If not, there is a printf-like function fprintf which we
can use to print into this file. The first argument is said file pointer.
The file turtle.cpp implements everything. There are three global variables for the pose of the turtle: x, y, and angle.
These are updated by two functions: move() which moves by a distance (if not given a default distance of one is taken).
This uses cosine and sine functions and does convert angle to radians due to the library functions cosand sin being in
terms of radians while many people think in degrees.
This conversion is simple: you divide radians by 2𝜋 as this brings you a fraction of the circle (like a percentage where
1 means once around the circle, 0.5 means halfway around). And we multiply this with 360. In the implementation, we
cancel out a factor of two and divide by 𝜋 in order to multiply by 180.
Change the program to generate awesome turtle graphics, we will post a few tasks on the web page.

#include<stdio.h>
#include<math.h>

double x;
double y;

(continues on next page)

35

https://en.wikipedia.org/wiki/Turtle_graphics
https://www.khronos.org/
https://www.cairographics.org/

Computational Foundations I

(continued from previous page)

double angle; /// in degrees

FILE *f;

void move(double len=1)
{

x = x + len * cos(angle / 180.0 * M_PI);
y += len * sin(angle / 180.0 * M_PI);
if (f != NULL)

fprintf(f, "%f %f\n",x,y);
}

void turn(double by)
{

angle += by;
// this is completely unneeded, but might be nice for debugging and is a common␣

↪pattern
// it is only efficient when you are doing moderate turns. For massive turns (e.g.

↪, angle=10e9) this
// will be long loops.
while(angle > 360.0) angle -= 360;
while (angle < 0) angle += 360;

}

int main()
{

f = fopen("plot.dat","w"); // this will overwrite
if (f == 0) {

perror("File Problem: ");
exit(-1);

}

// init the turtle
x = y=angle=0;
// do some turtle graphics (this is a star, is it?)
for(int i=0; i < 100; i++){

move(100);
turn(140);

}
fclose(f);

return 0;

}

36 Chapter 7. Turtle Graphics Example

Computational Foundations I

7.2 Visualizing the Turtle Graphics

To get you started, we provide a script that generates a PNG file (well, this is handier for the lecture as we typically work
remotely on a Linux machine).

set term png
set output "/var/www/html/gnuplot.png"

set style line 1 \
linecolor rgb '#0060ad' \
linetype 1 linewidth 2 \
pointtype 7 pointsize 0

plot 'plot.dat' with linespoints linestyle 1

By removing the first two lines (activating PNG and giving a filename), gnuplot should pop up with a window.
The script is easy: we just give some visualization parameters and draw all line segments and points from plot.dat.
As pointsize is zero, you don’t see points, but sometimes you might want to activate it, for example, set it to 1.5.
If you did it the right way, you have a nice star from the reference implementation looking like this:

7.2. Visualizing the Turtle Graphics 37

Computational Foundations I

7.3 The Makefile

It is very common that while developing a system, a few things have to be called in the right order. GNU Make is a very
common tool that allows you to automate such things.
In its simplest form, it is given as a text file called Makefile which lists at least one target. A target is just a nickname for
a set of tasks or a name of a file if a file is to be generated as the outcome of the target.

all:
g++ -o turtle turtle.cpp
./turtle
gnuplot graphics.plt

In our minimal example above, the nickname is all. If you invoke make, it will look for the main target (either one given
on the command line or the first target in the file) and will try to build it. Therefore, it first builds all dependencies (here
are none specified, we will refine this Makefile later). When the dependecies are refreshed, it will run all lines. Each line
needs to start with a TAB character (no spaces!) to group them together. And make is really picky, if the first line fails,
it will abort the target.
In other words:

make

will try to make the target all by compiling turtle.cpp into turtle, then running turtle, then running gnuplot. If any of those
fails, an error is generated and subsequent aspects are not performed anymore.
You will see more powerful Makefiles through the time…
Download Package

38 Chapter 7. Turtle Graphics Example

CHAPTER

EIGHT

OPENGL - THE CORE COMPUTER GRAPHICS API

Though I would today not recommend using glut or even using DirectX, OpenGL, or Vulkan directly, some experience
is helpful when working with realtime 3D graphics on higher levels. For now, we will be using glut as it provides the
traditional API-based OpenGL model still and is portable between Linux and Windows, hence runs on all our target
systems easily.
If you ask me for the current library to go to for reasonably working with modern OpenGL, I would point you to glfw
for API management and glad for extension management. Google these two terms, but be warned: there is typically no
classical rendering anymore, but everything is done in terms of matrices, vertex shaders, fragment shaders and the like.
This might require a lot of background knowledge on rendering pipelines and modern OpenGL. Find a long and detailed
tutorial and invest some time, if you want.

8.1 Installing GLUT (Windows Example)

With GLUT 3.7, glut for Windows and glut for Linux have been merged. Download two ZIP files from opengl.org (see
screenshot) and compile them.

39

http://opengl.org

Computational Foundations I

Or you just download (Intel platforms only) the provided binary distribution glutdlls37beta (recommended as
building glut is tricky).
I will assume you have this file. It contains only a few files (uncompress it somewhere, but remember where).

8.2 Installing GLUT (Linux)

In this lecture, we only support Debian-based distributions (including Ubuntu). In all of these

apt-get install freeglut

should be sufficient. However, it might be a bit tricky to set up OpenGL and hardware accelleartion correctly.

8.3 Our first project (Visual Studio)

First, create a new C++ console project.
Create a first integration test C++ file calling a single glut function:

/*
This mini-program accesses the glut header and tries to initialize glut.
It serves as a test that your project has been set up correctly.
*/

#include <glut.h>

int main(int argc, char **argv)
{

glutInit(&argc, argv);
return 0;

}

Compilation is expected to fail on this one. We did not yet tell the compilers where to look for the file glut.h. In Visual
Studio, open the project properties. This brings a dialog looking (except translation) like this:

40 Chapter 8. OpenGL - The Core Computer Graphics API

Computational Foundations I

Be careful: Visual Studio can have different settings for all platforms and configurations (e.g., Debug, Release, etc.). But
for now, we want to change all platforms at once. Hence, make sure that in the top line there is all configurations (like in
mine) but as well all platforms selected.
Then Open the C++ tab and find Additional Include Directories (for me it is on top of General). As I was putting it into
my Documents folder and my account is named marti, I had to write C:\Users\marti\Documents\glut\
glutdlls37beta into this line.
If you did it right and you compile, you will see different errors now: only linker errors left. This can be seen as the error
message starts with LINK:
For me, it tells me that it would like to find a file called glut32.lib. Let us tell the system where this one is. Open the
preferences again, remember to edit all configurations at once. You can use ALT-F7 as a shortcut typically.
The second group of options is named linker and there we will most likely be able to add the library directory. In
the general tab somehow in the middle, there is Additional Library Directories. Point to the lib subdirectory of your
decompressed binary distributed library, for me C:\Users\marti\Documents\glut\glutdlls37beta.
Now be patient, if this compiles, you are done and there is nothing tricky coming. Keep trying. Do you have the right files?
Did you point the compiler and header to find the right files?

8.3. Our first project (Visual Studio) 41

Computational Foundations I

8.4 A Reasonable Example

Now, just replace the source code with the following exapmle taken from Stanford CS248. It should compile and run and
maybe you see something…

#include <glut.h>

void display() {
glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_POLYGON);
glColor3f(1, 0, 0); glVertex3f(-0.6, -0.75, 0.5);
glColor3f(0, 1, 0); glVertex3f(0.6, -0.75, 0);
glColor3f(0, 0, 1); glVertex3f(0, 0.75, 0);
glEnd();

glFlush();
}

int main(int argc, char** argv) {

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(800,600);
glutCreateWindow("Triangle");
glutDisplayFunc(display);
glutMainLoop();
return 0;

}

When I run this code, however, it does not work: It shows a messagebox like this:

which translates essentially to that the file glut32.dll could not be found. During runtime, you must ensure that the
dynamic parts of your libraries are available. Fortunately, the file glut32.dll is available in the binary distribution
and we can copy it into both the Release and Debug folder of our project. When you distirbute your executable to friends,
remember to put this file into the same directory as the .exe file. To do this, you can open the folder of your project by
right-clicking the project in the left navigator bar and clicking “Open in File Browser”.
When you copied the DLL to the folder of your release, the program will finally run and show a triangle with three
different colors and color interpolation for the surface of the triangle.

42 Chapter 8. OpenGL - The Core Computer Graphics API

Computational Foundations I

Now we can start writing more fancy visualizations, for example, some of our turtle graphics can be definitely ported to
OpenGL. Note that OpenGL immediately supports 3D, so there is now a lot we can do.

8.5 Further Reading

OpenGL is a complex library and the history of OpenGL is full of advice that is just not correct today. Hence, it is
difficult for novice users to navigate Internet resources. Some of them are very good, but outdated, others are very bad,
but state-of-the-art, and finally, video tutorials on Youtube steal your time as it is just not working on your computer as
it does on the presenters computer.

8.5. Further Reading 43

Computational Foundations I

Though it is nearly 1,000 pages, it is always fun to read.

44 Chapter 8. OpenGL - The Core Computer Graphics API

Part II

Tutorial Assignments

45

CHAPTER

NINE

TASK SHEET 1: NIKI THE ROBOT

Niki is a traditional environment to teach programming. It is about a small robot that has a very limited set of sensors and
actions. However, Niki can be programmed in various ways to solve quite complex problems. As Niki does not have a
concept of variables, it uses the environment of the robot to store information. In order to efficiently solve some advanced
tasks, Niki provides support for recursion, allowing simple solutions to some complex problems.
Below screenshot shows the result of our joint exploration of Niki in the lecture:

47

Computational Foundations I

9.1 Learning Outcome

We learn how to use loops and conditions to solve some toy problems for Niki. We prepare for the principle of recursion.

9.2 Task 1: Doubling Numbers

Program Niki to initialize a vertical tower of deposited markers starting at location 1/1. The height of the tower shall be
interpreted as an natural number. Assure and assume that the robot is located on the basement of the first tower looking
right. Now, write a program (decompose it into procedures where sensible) to double the number by creating a tower
right of the given tower with double the height. (Tip: An oral explanation of a possible implementation is given in the
lecture video)

9.3 Disclaimer

Below assignments have been taken from the Niki manual. They have been formulated by various people, but not from me.

9.4 Task 2: Staircase

Recreate the given world (click on Arbeitsfeld->Verändern), now the mouse will show you what changes a click would
do. These include

• placing markers
• placing walls
• placing the robot

a) Write a program that knows the world and picks up the marker, brings it to the podest and deposits it there.
b) Based on domain knowledge that there is first a double staircase and then a podest, find the marker on the podest
without knowing the detailed shape or position of the marker and bring it to the podest

48 Chapter 9. Task Sheet 1: Niki the robot

Computational Foundations I

9.5 Task 3: Storage

Niki is supposed to sort the large items (two markers) into the bottom line of the depicted storage space and the small
ones (one marker) into the upper row. In a first version, he keeps the X location of all of those. In a more advanced
version, the result is supposed to be that the both rows are filled from left to right.

9.6 Task 4: Waste Collection

Niki is somewhere within a hall. The hall has one single entrance. Along the outside wall, there is waste deposited. Niki is
supposed to pick up all the waste (not knowing where exactly it is, just that it is adjacent to the wall). Write a program for
it. (Tip: Try to program it such that left of Niki is always a wall. This is called left hand rule and would walk around any
polygons inner or outer boundaries. With the one hole, this rule would change from the inner to the outer boundary and
back). This tip enlightens us with a simple fact: sometimes very hard programs can be written pretty concisely by finding
an invariant (a natural language condition that remains true throughout the program or program part like a loop). Then,
we do a mathematical proof that this invariant is exhausting the problem space (no programming needed) and implement
the program (only make sure the invariant is never broken). This approach leads to a notion of algorithmic correctness
we will discuss later.

9.5. Task 3: Storage 49

Computational Foundations I

9.7 Task 5: Tunnel

LetNiki pick up the item in the following case
In a few weeks, extend this task by bringing the item back to the beginning of the tunnel of unknown shape. Therefore,
either memory (which Niki does not have) or recursion (which Niki has) is requied.

9.8 Task 6: Signs in the world

The graphics visualizes a map in which Niki is supposed to follow the marked cells. The following rules are in place
• a cell filled with one marker means go straight.
• two markers and three markers stand for specific turns

50 Chapter 9. Task Sheet 1: Niki the robot

CHAPTER

TEN

TASK SHEET 1: BASIC C AND C++

C and C++ are important imperative programming languages and we are on our way to master these languages. This
task sheet is a collection of a wide range of short programs you are supposed to write in order to gain routine in basic
structures such as functions, loop, conditions, input and output.

10.1 Task 1: PrettyPrint

In the lecture, we have seen the hello world program. Extend this program to draw a frame around. Examples can be
found on https://texteditor.com/ascii-frames/.
Maybe your program should output

╔═════════════╗
║ Hello World ║
╚═════════════╝

10.2 Task 2: PrettyPrint 2

Now extend your program to print a string into a frame. A string in C++ is given as a pointer of type char. strlen can
be used to find the length of a string. Complete the following program snippet:

void pprint(char *what)
{

printf("╔");
for /*extend this one to print enough of ═ using strlen(what) */

printf("╗");
printf("║ ");
printf("%s",what);
/*...*/

}

Make sure that your box wraps the text sensibly (one space character before and after your text)

51

https://texteditor.com/ascii-frames/

Computational Foundations I

10.3 Task 3: PrettyPrint3

Extend the previous result in the following way: For all strings shorter than 50 characeters, draw the box as before. For
strings longer than 50 characters, compute a new string in which 47 characters are taken from the parameter and the last
three characters are manually set to three dots. In this way, arbitrary long things will be printed as abbreviations into your
box code. Node that strings shorter than 50 characters must not be abbreviated.

10.4 Task 4: Calculus Primer

As a simple example, consider the logistic curve: $𝑓(𝑥) = 1
1+𝑒−𝑥 $ This function plays a crucial role in machine learning,

so it is worth having a look at it early in your career.

10.4.1 Task 4.1 Plot the Function

As data visualization from C++ is challenging, we will rely on a powerful tool known as gnuplot to show our results. As
a preparation, download gnuplot and have a look at http://www.gnuplotting.org/plotting-data/
In this example, gnuplot expects a file to contain your data. Remember that we can redirect the output of programs to
files? Your task is to write a C/C++ program that generates a plot of the function as a text file in gnuplots format having
always the X coordinate in the first column, the Y coordinate in the second column, and then a newline.
Write a program that generates a plot. In a first version, take constants in your program for start, stepsize, and end as to
have a simple loop do all the work going over the X coordinates. Run the program with redirecting the output as follows:
yourprogram > plot.dat Then, use gnuplot to inspect the data. Did you do it right?

10.5 Task 4.2: The Riemann Integral

As you know, one way of computing the integral of simple functions of one variable is to decompose the parameter space
(x) into multiple locations (𝑥𝑖) and replace the true function with a staircase function by using supremum or infimum
of the function. In our case (except at X=0), there are no singularities and the function is monotonous. Hence, we can
replace the supremum (resp. infimum) with maximum and minimum of the function values at the left hand side and right
hand side of the interval. Given a distance parameter 𝜖, write a function to compute the upper sum and lower sum (e.g.,
the one based on maximum and the one based on minimum) of the integral $∫2

1 𝑓(𝑥)𝑑𝑥$ Write this function in a single
loop looking similar to

double epsilon = 0.15;
double US=0; // upper sum
double LS=0; // lower sum
for (double x = 1; double x < 2; x+=epsilon)
{

//...
US += //...
LS += ...

}
printf("We believe that the integral I follows\n");
printf("%.2f < I <= %.2f\n", LS,US);

Learn that two different things (computing the upper sum and the lower sum) that depend on the same intermediate values
can often be combined.

52 Chapter 10. Task Sheet 1: Basic C and C++

http://www.gnuplotting.org/plotting-data/

Computational Foundations I

10.6 Task 4.3: The Discrete Differential

Given a function

double f(double x){...}

approximate the differential at x=1 by creating a series of discrete difference quotients. Therefore, look at https://en.
wikipedia.org/wiki/Difference_quotient and use the central difference formula for varying Δ𝑃
Given a real number 𝑞, can you estimate the value of 𝜕𝑓

𝜕𝑥 (𝑞)
Note that this approach to calculus lies at the heart of discretizations of partial differential equations and is an essential
basic concept related to the method of finite elements which you might already know from simulation.

10.7 Task 5: Prime Numbers

Write a function

void print_primes(int max)

that outputs all prime numbers smaller or equal than a given parameter max. Therefore, first implement a predicate
is_prime which returns a boolean value if or if not the function is prime. This should be tested by a simple loop.
Division can be tested by using the modulo function: an integer value q divies a value p if and only if p % q == 0 In
this expression % denotes the modulo operation of taking the remainder of dividing p by q.
Remember, that a predicate is always a function in terms of some data which returns a boolean value.

https://en.wikipedia.org/wiki/Boolean-valued_function

10.8 Task 6: More on prime numbers

The following function is one in which there is still a lot of magic and unknown information. In number theory, the
function 𝜋(𝑥) is the number of prime numbers smaller than 𝑥. Compute this number for 𝑥 ∈ [0, 1000] and plot it with
gnuplot. Look at the staircase pattern, but also at the overall trend. It is growing with a surprising speed, isn’t it? This is
the heart of the security of current cryptosystems, hence, of all our online payment, communication, finance systems. If
there were not enough prime numbers, it would be ridiculously difficult to find some. But as you might know, one needs
prime numbers for some encryption algorithms like RSA. Luckily, prime numbers are so common, that we can quickly
generate huge ones (even if they are so large, we will not be able to proof that they are prime).
In cryptography, we sometimes use random numbers together with a series of tests to find numbers of which we believe
they are prime. They are known industiral-grade prime numbers.
https://en.wikipedia.org/wiki/Industrial-grade_prime

10.6. Task 4.3: The Discrete Differential 53

https://en.wikipedia.org/wiki/Difference_quotient
https://en.wikipedia.org/wiki/Difference_quotient
https://en.wikipedia.org/wiki/Boolean-valued_function
https://en.wikipedia.org/wiki/Industrial-grade_prime

Computational Foundations I

54 Chapter 10. Task Sheet 1: Basic C and C++

CHAPTER

ELEVEN

TASK SHEET 2 (LECTURES 4-6)

Qualification Goal: In this task sheet, you are expected to develop routine in writing loops and recursions for simple
cases. Some of the given formulas are helpful to know.
You can submit your results to Moodle for correction, but preferably as a single C file for all things you want to have
corrected. We will discuss these tasks in the lecture to some extent. But to develop some routine in programming, you need
to solve these tasks yourself, preferably without help from the Internet. It is advisable to do these tasks repeatedly (or Google
for different sum formulas) until you are able to do them.

11.1 Task 1: Loops

Implement the following expressions using loops. If two sides are given, implement one as a loop, the other one as an
expression. Put the values of the left hand side into a variable lhs, the right hand side into rhs and compare the two values.
Output an error message if they don’t fit.

𝑛
∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2

Example:

#include<stdio.h>

int main(void){
int lhs=0;
for (int i=1; i<= n;i++)

lhs += i;

rhs=n*(n+1) / 2;
print("LHS: %d\nRHS: %d\n", lhs, rhs);
if (rhs != lhs)

print("Something is wrong");
};

•
𝑛

∑
𝑖=1

𝑖2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
6

•
10
∏
𝑖=1

𝑛

55

Computational Foundations I

•

(𝑎 + 𝑏)𝑛 =

•
10

∑
𝑖=1

𝑖

•
10

∑
𝑖=1

(2𝑖 + 3)

•

𝑛! =
𝑛

∏
𝑖=1

𝑖

11.2 Task 2: Binomial Coefficients

Please implement a factorial function first (you could find one in the script, but it is better to try it on your own). It should
have the signature

int factorial(int k)

Then only implement the expression of the binomial coefficient.

(𝑛
𝑘) = 𝑛!

𝑘!(𝑛 − 𝑘)!
Check it with some known values by hand (create the values and double-check your implementation).
The binomial coefficient is traditionally not defined as such a quotient, but in a recursive manner as follows:
First, we fix base cases

(𝑛
0) = 1 = (𝑛

𝑛)

and then the recurisve relation

(𝑛 + 1
𝑘 + 1) = (𝑛

𝑘) + (𝑛
𝑘 + 1)

Implement a recursive function. Note that you will have to rephrase the reccurence relation such that given 𝑛 and 𝑘 you
can call the binomial function with certain values.
Create a table how long it takes to compute all coefficients up to 𝑚, more precisely the set of values:

𝐶𝑚 = {(𝑛
𝑘) for which 0 ≤ 𝑘 ≤ 𝑛 ≤ 𝑚}

Your program is expected to fail (taking too long) for some cases from 𝐶65.
However, there is a solution to this. And this is a good argument why we need to study efficient algorithms and why
mathematical definitions are sometimes handy for proofs, but bad for computers.

56 Chapter 11. Task Sheet 2 (Lectures 4-6)

Computational Foundations I

Construct the algorithm given the following non-recursive definition.

(𝑛
𝑘) =

𝑘
∏
𝑖=1

𝑛 + 1 − 𝑖
𝑖

Give the number of steps for a concrete instance and estimate the complexity for 𝑛 → ∞ assuming 𝑘 ≤ 𝑛.
Speed up this program by transforming the problem for 2𝑘 > 𝑛 using the symmetry setting 𝑘 ∶= 𝑛 − 𝑘.
Does this change the complexity? Does it change the runtime? Explain.

11.2. Task 2: Binomial Coefficients 57

Computational Foundations I

58 Chapter 11. Task Sheet 2 (Lectures 4-6)

CHAPTER

TWELVE

LEARNING TASKS

12.1 Category 1: General Advice Qualification Goals

These are learning tasks that are not relevant for the practical aspects of the examination. Simple and general questions of
the category knowledge (e.g., “what is cd good for”) can still be part. So you are expected to know the contents, but not to
be able to apply and use them.

• Use the command line

12.2 Category 2: Routines

These are learning tasks that are heavily mandatory for your future work with computers. You are not only expected to
solve the tasks, but to build routine abilities to solve them without mental load. The typical way of learning is by repetition
of even the same tasks with reducing support (e.g., first time you shall somehow get it done with Google, Stackoverflow, and
help from others. But ultimately, you shall just sit down with not more than the plain task description and solve it with very
few mistakes.

By now, you should already have built some routine ability to
• set up C / C++ projects either in Visual Studio or on the command line
• output strings with printf, maybe even integrating local variables or function values you computed.
• implement loops that do what you intended
• understand the principle of recursion (building up at the moment)
• solve yourself the majority of the tasks given to you

12.3 Category 3: In-Depth Knowledge

*These are pieces of knowledge that you need to learn in a classical way. They come up in the examination and are im-
portant for understanding future aspects of the lecture and the general landscape of the computational method. Treat this
knowledge as a mixture of theoretic knowledge (excerpts, definitions, learn by heart) and application-oriented knowledge
(e.g., give complexity, give reasons to certain things, proof simple complexity statements).
You should by now work on learning to

• estimate complexity of simple functions consisting of loops and function calls, but not for recursion.

59

Computational Foundations I

12.4 Category 4: Computer Science Excellence (out of scope!)

When I was asking the crowd for what the lecture is trying to teach, the first student statement has been the following, which I
extended with the condition that makes clear that this is the definition of computer science in itself. And that it is not expected
to happen during this lecture. At least not routinely…

If you want to become a famous computer scientist, find an interesting problem and
• take a mathematical formulation and make it efficient as an algorithm

60 Chapter 12. Learning Tasks

	I Basic Knowledge
	The Disk Operating System (DOS)
	Automation in Windows
	Microsoft Windows
	Unix, Linux, and POSIX
	POSIX
	Linux as seen by a user
	Example: Processing data in a Linux environment

	Imperative Programming
	A Robot Model of Intrinsic Instructions
	Procedures
	Ports and Functions
	Control Structures
	Scopes
	Memory
	Variables
	An example robot program sketch
	Algorithm Design

	The C and C++ Language
	Introduction
	Hello World
	Hello C++ World

	Functions and Signature-based Selection
	Code Libraries

	Turtle Graphics Example
	Implementation in C
	Visualizing the Turtle Graphics
	The Makefile

	OpenGL - The Core Computer Graphics API
	Installing GLUT (Windows Example)
	Installing GLUT (Linux)
	Our first project (Visual Studio)
	A Reasonable Example
	Further Reading

	II Tutorial Assignments
	Task Sheet 1: Niki the robot
	Learning Outcome
	Task 1: Doubling Numbers
	Disclaimer
	Task 2: Staircase
	Task 3: Storage
	Task 4: Waste Collection
	Task 5: Tunnel
	Task 6: Signs in the world

	Task Sheet 1: Basic C and C++
	Task 1: PrettyPrint
	Task 2: PrettyPrint 2
	Task 3: PrettyPrint3
	Task 4: Calculus Primer
	Task 4.1 Plot the Function

	Task 4.2: The Riemann Integral
	Task 4.3: The Discrete Differential
	Task 5: Prime Numbers
	Task 6: More on prime numbers

	Task Sheet 2 (Lectures 4-6)
	Task 1: Loops
	Task 2: Binomial Coefficients

	Learning Tasks
	Category 1: General Advice Qualification Goals
	Category 2: Routines
	Category 3: In-Depth Knowledge
	Category 4: Computer Science Excellence (out of scope!)

