
Chapter 2: The Recursion Principle and a Few Basic Algos

1



Execution of Recursion with a Stack

Trace of Execution:

When facing line 9, the computer will

- Put Line 9 onto the stack

- Put 5 onto the stack

- Call (jump) to Line 1

L9

5

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 1, 

- Take x from the stack (x=5)

- Run program until Line 5

- Put L5 onto the stack and call

- Put 5-1 = 4 onto the stack

- Call (jump) to Line 1

L9

5

L9

L5

4

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 1, 

- Take n from the stack (n=4)

- Run program until Line 5

- Put L5 onto the stack and call

- Put 4-1 = 3 onto the stack

- Call (jump) to Line 1

L9

L5

4

L9

L5

L5

3

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 1, 

- Similar as before

L9

L5

L5

3

L9

L5

L5

L5

2

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 1, 

- Similar as before

L9

L5

L5

L5

2

L9

L5

L5

L5

L5

1

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 1, 

- Similar as before

L9

L5

L5

L5

L5

1

L9

L5

L5

L5

L5

L5

0

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 1, 

- Now we get n=0 from the stack

- Execute through line 3

- Pick jump back address (top L5)

- Push return value

- Jump!

L9

L5

L5

L5

L5

L5

0

L9

L5

L5

L5

L5

1

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 5 (jumping back), 

- Get ret = 1 from stack

- Execute Line 5 substituting call to

factorial(0) with 1 

- Pick jump back address (top L5)

- Push return value being

1*factorial(1)=1

- Jump!

L9

L5

L5

L5

L5

1

L9

L5

L5

L5

1

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now facing line 5 (jumping back), 

- Get ret = 2 from stack

- Execute Line 5 substituting call to

factorial(1) with 1 

- Pick jump back address (top L5)

- Push return value being 2*1=2

- Jump!

L9

L5

L5

L5

1

L9

L5

L5

2

Before After



Execution of Recursion with a Stack

Trace of Execution:

Similarly: 

- Pop computed function value

- Compute expression

- Pop location for jump

- Push expression value as return

value

- Jump!

L9

L5

L5

2

L9

L5

6

Before After



Execution of Recursion with a Stack

Trace of Execution:

Similarly: 

- Pop computed function value

- Compute expression

- Pop location for jump

- Push expression value as return

value

- Jump!

L9

L5

6

L9

24

Before After



Execution of Recursion with a Stack

Trace of Execution:

Similarly: 

- Pop computed function value

- Compute expression

- Pop location for jump

- Push expression value as return

value

- Jump!

L9

24

120

Before After



Execution of Recursion with a Stack

Trace of Execution:

Now the call stack of the recursion

has been completely used. As there

are no outstanding calls, the

remaining value (last pushed) is the

return value of the function. And as

we don‘t jump to line 5 anymore, but 

to line 9, the program will continue

with the execution of line 9 by

printing the return value 120 as

found on the stack.

L9

24

120

Before After



In real computers, code locations are integer numbers just like integer numbers and other things are

represented as sequences of bytes (small integer numbers) anyways. That is, there is no distinction

between jump address data or attribute data. Everything is just in terms of bytes. 

The signature (parameter and return value declaration) define how the stack is used by the function:

- How much to take before executing

- How much to put for the return value

Therefore, the function can safely identify the location of the jump address and jump.

In addition, note that variable-length data is a problem here which is why we will introduce the concept of

pointers while looking at C++. In short, if attributes have a variable length, they are not given as parameters. 

Instead, their memory location is given as a pointer (just as the return address is a memory pointer, 

technically speaking). 

This is introduced later, maybe the sentence helps when recaping at the end of the semester!

Remark


