Chapter 1: Algorithms

Free-form Algorithm Introduction

Algorithm 1. One draws a circle with the same radius r around A and B. If the radius is large enough (greater than half the distance), we are left with two intersection points of the circles which together define a line. This line is the bisector and the intersection of this respective line with the original line is the middle point p.

Assume we have a device (or person, or computer, or . . .) that enables us to

- Draw a straight line between two points in space
- Observe intersections of pairs of lines or pairs of circles resolving them to points
- Draw a circle around any of the involved points such that the circle intersects an already existing point.

Introducing an (abstract) machine

Assume we have a device (or person, or computer, or . . .) that enables us to

- Draw a straight line between two points in space
- Observe intersections of pairs of lines or pairs of circles resolving them to points
- Draw a circle around any of the involved points such that the circle intersects an already existing point.

Implement in Terms of Machine Instruction

Algorithm 1: Given a line between two points A and B, we can draw a circle around A intersecting B and a circle around B intersecting A. These two circles will intersect in two points, say C and D. Now draw the line C D and observe the intersection with A B. This is the middle point.

Listing 1.2.1 A first program

- 1 Circle (A,B)
- 2 Circle(B,A)

Listing 1.2.2 Bisector of a Line in Euclidean Geometry

```
1 C1 := Circle(A,B)
2 C2 := Circle(B,A)
3 C,D := Intersect(C1,C2)
4 L1 := Line(A,B)
5 L2 := Line(C,D)
6 P := Intersect(L1,L2)
```

This is called imperative programming

Compress Representation by Expressions

Note: now, expressions are just built from basic operators (+,*,...), precedence management (brackets) and function calls (hardware functionalities like Circle)

CD ·=	Inter	sect (Cir	cle(A B), Circle	$(\mathbf{B} \mathbf{A})$		
A A DA A A A A A A A A A A A A A A A A							
P := 1	Interse	ct (Line (A, B), Li	ne(C,D))			

Advantage: only relevant intermediate results get names (C,D)

This compression is universal

Listing 1.2.4 Bisector of a Line in Euclidean Geometry

```
1 P:= Intersect (Line (A, B),
2 Intersect (Circle (A, B), Circle (B, A)))
```

Each sensible program or algorithm that based on some input I creates an output O, more formally each machine implementation of a function or relation

0=f(I)

Can be given as the evaluation of an expression.

- λ-calculus
- ➔ Functional Programm
- → R
- ➔ Scala

This is called **functional programming**

Another way of representing this algorithm

$$M = A + \tau (B - A)$$
$$M = C + \lambda (D - C)$$
$$\|C - A\| = \|A - B\|$$
$$\|C - B\| = \|A - B\|$$
$$\|D - A\| = \|A - B\|$$
$$\|D - B\| = \|A - B\|$$

Express the problem as a set of rules (e.g., equations in this case), maybe involving variables (τ , λ). Such programs are usually executed by a classical imperative implementation solving a certain family of problems. SQL is one important example of a declarative "programming" language

Related to:

- Integer programming, Constraint solving
- Numeric optimization
- Physical Planning (the transformation of a SQL query to an executable sequence of DB operations)

This is called **declarative programming**

Chapter 1.2.1 Written Addition

Addition of Digits – Table Lookup

Define Addition of two one-digit numbers

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

Note: In order to avoid having the

Algorithm 2. Given two n-digit numbers $a = (a_n, ..., a_1)$ and $b = (b_n, ..., b_1)$, prepare a number as follows: Starting from i = 1, set the i - th digit (from the end) of an output variable $c = (c_{n+1}, ..., c_0)$ to the sum of a_i and b_i modulo 10. If the number $a_i + b_i$ is larger than 10, remember this and add an additional 1 to the next digit. If the last input digit c_n does not lead to a carry, remove the slot c_{n+1}

Adding Two n-digit numbers

ТЛП

Listing 1.2.5 Adding two n-digit numbers

```
#include<iostream>
 2
   #include<vector>
   #include<cassert>
 3
   // compile: g++ -std=c++11 -o add add.cpp
 4
 5
6
   std::vector<int> add (std::vector<int> &a, std::vector<int> &b)
 7
8
       // simplifying assumption: same length
9
        assert(a.size() == b.size());
10
        std :: vector <int > c(b.size()+1);
11
       int carry = 0;
12
       for (int i=a.size()-1; i \ge 0; i--)
13
14
            auto digit = a[i] + b[i] + carry;
15
            carry = (digit >= 10)?1:0;
16
            auto reduced_digit = digit % 10;
            std::cout << "At<sub>u</sub>"<<i << ", weuhaveua[i]="<< a[i]
17
18
                      << ",b[i]=="<<b[i]
19
                      << ", digit=="<<digit
20
                      << ", carry=="<<carry
                      << "c[i]_=ureduced_digit=="<<reduced_digit
21
```

Adding Two n-digit numbers


```
<< std :: endl;
        c[i+1] = reduced_digit;
    c[0] = carry; // can be 0 or 1
    return c;
      Listing 1.2.6 Output of adding two numbers program.
     At 2, we have a[i]=3, b[i]==3, digit==6, carry==0, c[i] = reduced_digit==6
in
      At 1, we have a[i]=2, b[i]=2, digit=4, carry=0, c[i] = reduced_digit=4
    2
      At 0, we have a[i]=5, b[i]==6, digit==11, carry==1, c[i] = reduced_digit==1
    3
      Result: 1146
    4
   auto output = add(a,b);
   std::cout << "Result:";
   for (const auto digit:output)
     std :: cout << digit;</pre>
   std :: cout << std :: endl;</pre>
```

Complexity (a Naive Version of Counting Lines)

9 assert(a.size() == b.size()); 3 10 std :: vector <int > c(b.size()+1); 11 int carry = 0; for (int $i=a.size()-1; i \ge 0; i--)$ 5 **auto** digit = a[i] + b[i] + carry;carry = (digit >= 10)?1:0; auto reduced_digit = digit % 10; std :: cout << " At_{u} "<< i << ", $we_{u}have_{u}a[i]$ ="<< a[i]<< ",b[i]=="<<b[i] << ", digit=="<<digit << ",carry=="<<carry << "c[i]___reduced_digit=="<<reduced_d << std::endl; $c[i+1] = reduced_digit;$ c[0] = carry; // can be 0 or 12 return c;

N+1 Times A few instructions that don't depend on N

N=a.size()

Landau-Symbols (Lower bounds)

We say, this algorithm has complexity O(N)

More formally

$$f \in o(g): \Leftrightarrow \forall_{c>0} \exists_{x_0>0} \forall_{x>x_0} |f(x)| < c |g(x)|$$

Interpretation:

A function is o(g) if for large enough arguments f(x) is bounded by a constant times g(x)

Less formally

```
"In the end (for x \to \infty), f grows slower than g"
```

More formally

$$f \in O(g) :\Leftrightarrow \forall_{c > 0} \exists_{x_0 > 0} \forall_{x > x_0} |f(x)| \le c |g(x)|$$

Same, but now:

"In the end (for $x \to \infty$), g grows slower or equally fast as compared to f"

Landau-Symbols (Upper Bound)

Conversely

$$f \in \Omega(g) : \Leftrightarrow \forall_{c>0} \exists_{x_0>0} \forall_{x>x_0} c |g(x)| \le |f(x)|$$

Less formally

"In the end (for $x \to \infty$), g grows slower than f"

Finally (for us)

$$f\in \Theta(g){:} \Leftrightarrow f\in \mathcal{O}(g)\wedge f\in \Omega(g)$$

Same, but now:

"In the end (for $x \to \infty$), g grows slower or equally fast as compared to f"

Applied:

Let f denote the number of steps of our addition program on a certain computer. Then

f(x) = 4 + 5(N + 1) = 4 + 5N + 5 = 5N + 9

On a different computer, maybe the cout is not counted as a single instruction (as in our strange machine), but itself as 42 instructions for really preparing the output.

Then

$$f(x) = 4 + (42 + 4) (N + 1) = 46N + 50$$

In both cases (that is kind-of independent from the details of the machine) both algorithms are

 $f\in O(N)$

Conversely, we know that – independent of the machine – each digit must be written. That is, at least N instructions (assuming that a write is O(1)) are needed to create the output, hence,

 $f\in\Omega(N)$

In summary, we conclude

 $f\in \Theta(N)$

Chapter 1.2.2 Insertion Sort

Definition 1. An algorithm \mathcal{A} solves the search problem if given an array $A = (a_1, \ldots, a_n)$ it creates an array B with the same entries as A, but $b_i \leq bi + 1$ for all $i = 1 \ldots n - 1$. Such an algorithm

Definition 2. Such an algorithm \mathcal{A} is called *in-place* if the input array A is used to hold the output (and typically only a small constant amount of additional memory is used).

Insertion Sort

Listing 1.2.7 Insertion Sort

```
|A = [1, 2, 4, 3, 5, 2]
   % Insertion Sort
2
3
   for j = 2: length (A)
4
       in_hand = A(j);
 5
        i = j - 1;
6
       while (i > 0 \&\& A(i) > in_hand)
 7
            A(i+1) = A(i); %shift right, consider A[i] empty
8
            i = i -1;
9
       end
10
       A(i+1) = in_hand;
11
        disp(A)
12
   end
```

Example Process Flow

ТШ

A formal discussion of this algorithms follows when we look more closely into sorting.

Hand	$ A_0 $	A_1	A_2	<i>A</i> ₃
	4	3	2	1
e				
3	4	ϵ	2	1
3	e	4	2	1
ϵ	3	4	2	1
2	3	4	ϵ	1
2	3	ϵ	4	1
2	e	3	4	1
3 <i>e</i> 2 2 2 <i>e</i>	2	3	4	1
1	2	3	4	ϵ
1	2	3	4	ϵ
1		3	ϵ	4
1	2	ϵ	3	4
1	ϵ	2	3	4
ϵ	1	2	3	4
1 1		е 2	3 3	4 4