%

=
c
e

Algor

Chapter 1

Free-form Algorithm Introduction TUTI

Algorithm 1. One draws a circle with the same radius r around A and B. If the radius is large enough (greater
than half the distance), we are left with two intersection points of the circles which together define a line. This
line is the bisector and the intersection of this respective line with the original line is the middle point p.

Assume we have a device (or person, or computer, or ...) that enables us to

* Draw a straight line between two points in space
* Observe intersections of pairs of lines or pairs of circles resolving them to points

* Draw a circle around any of the involved points such that the circle intersects an already existing
point.

Introducing an (abstract) machine Tum

Assume we have a device (or person, or computer, or ...) that enables us to

* Draw a straight line between two points in space
* Observe intersections of pairs of lines or pairs of circles resolving them to points

* Draw a circle around any of the involved points such that the circle intersects an already existing
point.

Implement in Terms of Machine Instruction Tum

w

Algorithm 1: Given a line between two points A and B, we can draw a circle around A intersecting
B and a circle around B intersecting A. These two circles will intersect in two points, say C and D.
Now draw the line C D and observe the intersection with A B. This is the middle point.

Listing 1.2.1 A first program

1 |Circle(A,B)
2 |Circle (B,A)

Listing 1.2.2 Bisector of a Line in Euclidean Geometry

1 |C1 := Circle(A,B)

2 |C2 := Circle(B,A)

3 |C,D := Intersect(C1,C2)
4 |L1 := Line(A,B)

5 |L2 := Line(C,D)

6

P := Intersect(L1,L2)

This is called imperative programming
4

Compress Representation by Expressions Tum

Note: now, expressions are just built from basic operators (+,%,...), precedence management (brackets) and
function calls (hardware functionalities like Circle)
Listing 1.2.3 Bisector of a Line in Euclidean Geometry

C,D := Intersect(Circle(A,B),Circle(B,A))
2 |P := Intersect(Line(A,B),Line(C,D))

-

Advantage: only relevant intermediate results get names (C,D)

This compression is universal TUTI

Listing 1.2.4 Bisector of a Line in Euclidean Genmetr}r

1 P:=Intersect(Line(A,B),
2 Intersect(Circle(A,B),Circle(B,A)))

Each sensible program or algorithm that based on some input | creates an output O, more formally each
machine implementation of a function or relation

0=f()

Can be given as the evaluation of an expression.

= A-calculus

=» Functional Programm
2 R

=» Scala

This is called functional programming
6

Another way of representing this algorithm TUT

M=A+1B-A)
M=C+A(D-0C)
IC - Al = ||A-B|
IC - B|| = |A - BJ|
D - Al = ||A - BJ|
ID - B|| = ||A - BJ|
Express the problem as a set of rules (e.g., equations in this case), maybe involving variables (z, 1). Such
programs are usually executed by a classical imperative implementation solving a certain family of
problems. SQL is one important example of a declarative ,programming“ language

Related to:

- Integer programming, Constraint solving

- Numeric optimization

- Physical Planning (the transformation of a SQL query to an executable sequence of DB operations)

This is called declarative programming
,

c
O

1 Written Addi

2

Chapter 1

Addition of Digits — Table Lookup

Define Addition of two one-digit numbers

+ 0 1 2 3 4 5 6 7 8 9
0 01 2 3 4 5 6 7 8 9 Note: In order to avoid having the
11 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

Algorithm 2. Given two n-digit numbersa = (a,,...,a;)and b = (b, ..., by), prepare a number as follows:
Starting from i = 1, set the i — th digit (from the end) of an output variable ¢ = (cy+1, ..., cp) to the sum of a;
and b; modulo 10. If the number a; + b; is larger than 10, remember this and add an additional 1 to the next
digit. If the last input digit c,, does not lead to a carry, remove the slot ¢,

Adding Two n-digit numbers

Listing 1.2.5 Adding two n-digit numbers

1 |#include<iostream>

2 |#include<vector>

3 |#include<cassert>

4 |// compile: g++ —std=c++11 —o add add.cpp

5

6 |std :: vector<int> add (std::vector<int> &a, std::vector<int> &b)
7

8 // simplifying assumption: same length

9 assert(a.size() == b.size());

10 std :: vector<int> c(b.size()+1);

11 int carry = 0;

12 for (int i=a.size()-1; i >= 0; i--)

13 {

14 auto digit = a[i] + b[i] + carry;

15 carry = (digit >= 10)?1:0;

16 auto reduced_digit = digit % 10;

17 std :: cout << "At,"<<i << ", ,we have a[i]="<< a[i]
18 << " ,bli]=="<<b]|i]

19 << ",digit=="<<digit

20 << " ,carry=="<<carry

21 << "cli] = reduced_digit=="<<reduced_digit

10

Adding Two n-digit numbers

22 << std ::endl;

23 c[i+1] = reduced_digit;

24 }

25 c[0] = carry; // can be 0 or 1

26 return ¢;

27

28 |} Listing 1.2.6 Output of adding two numbers program.

29) 1 |At 2, we have a[i]=3,b[i]==3,digit==6,carry==0,c[i] = reduced_digit==
30 [inl 5 I At 1, we have ali]=2,b[i]==2,digit==4,carry==0,c[i] = reduced_digit==
31 |1 3 |At 0, we have a[i]=5,b[i]==6,digit==11,carry==1,c[i] = reduced_digit==1
32 4 [Result: 1146

33

34

35 auto output = add(a,b);

36 std :: cout << "Result:. ";

37 for (const auto digit:output)

38 std :: cout << digit;

39 std :: cout << std ::endl;

40 |}

11

Complexity (a Naive Version of Counting Lines)

9 assert(a.size() == b.size()); .

10 std :: vector<int> c(b.size()+1); 3 N:a.SIZEO

11 int carry = 0;

12 for (int i=a.size()-1; i >= 0; i--) .

i | N+1 Times
14 auto digit = a[i] + b[i] + carry;

15 carry = (digit >= 10)?1:0; AfeW

16 auto reduced_digit = digit % 10; Instructions
17 std :: cout << "At,"<<i << ", ,we have_a[i]="<< a[i]

18 << " ,b[i]=="<<b[i] that don‘t
19 << ",digit=="<<digit

20 << " ,carry=="<<carry depend on N
21 << "cli] =ureduced_digit=="<<reduced_d

22 << std ::endl,;

23 c¢[i+1] = reduced_digit;

24 }

25 c[0] = carry; // can be 0 or 1

26 return c;

27

28 |}

12

Landau-Symbols (Lower bounds)

We say, this algorithm has complexity O(N)

More formally
f € 0(9): And vc>03x0>0vx>x0|f(x)| < clg(x)l
Interpretation:
A function is o(g) if for large enough arguments f(x) is bounded by a constant times g(x)

Less formally
,In the end (for x - o), f grows slower than g*

More formally
fEO(g):e vc>03x0>0vx>x0|f(x)| < c|g(x)]
Same, but now:
,In the end (for x - o), g grows slower or equally fast as compared to f*

13

Landau-Symbols (Upper Bound)

Conversely
fEQg):e Vc>03x0>ovx>xoclg(x)| <I|f(x)

Less formally
,In the end (for x —» o), g grows slower than f*

Finally (for us)
feB(g)e feEO(@ASEQ)
Same, but now:
,In the end (for x - o), g grows slower or equally fast as compared to f*

14

Applied: TLUTI

Let f denote the number of steps of our addition program on a certain computer. Then

f(x) =4+ 5(N+1)=4+5N+5=5N+9
On a different computer, maybe the cout is not counted as a single instruction (as in our strange machine),
but itself as 42 instructions for really preparing the output.

Then
f(x) =4+ (42+4)(N+1) =46N+50

In both cases (that is kind-of independent from the details of the machine) both algorithms are
feow)
Conversely, we know that — independent of the machine — each digit must be written. That is, at least N
instructions (assuming that a write is O(1)) are needed to create the output, hence,
fea)
In summary, we conclude

feoW)

15

=
O
p

lon

2 Insert

2

Chapter 1

TUTI

Definition 1. An algorithm A solves the search problem if given an array A = (ay, ..., ay) it creates an
array B with the same entries as A, but b; < bi + 1 forall i =1...n — 1. Such an algorithm

Definition 2. Such an algorithm A is called in-place if the input array A is used to hold the output (and
typically only a small constant amount of additional memory is used).

17

Insertion Sort

o0 S N e R =

Listing 1.2.7 Insertion Sort

A=

[1.,2,4,3,5,2]

% Insertion Sort

for

end

j = 2:length(A)

in_hand = A(j);

i =-1;

while (i > 0 && A(i) > in_hand)
A(i+1) = A(i); %shift right, consider Ali] empty
i=1i -1;

end

A(i+1) = in_hand;

disp (A)

18

Example Process Flow

A formal discussion of this algorithms follows when
we look more closely into sorting.

Hand | A 0 A 1 A 2 A 3
€ 4 3 2 1
3 4 € 2 1
3 € 4 2 1
€ 3 4 2 1
2 3 4 € 1
2 3 € 4 1
2 € 3 4 1
€ 2 3 4 1
1 2 3 4 €
1 2 3 4 €
1 3 € 4
1 2 € 3 4
1 € 2 3 4
€ 1 2 3 4

19

