
Chapter 1: Algorithms

1

Free-form Algorithm Introduction

2

Introducing an (abstract) machine

3

Implement in Terms of Machine Instruction

4

This is called imperative programming

Note: now, expressions are just built from basic operators (+,*,…), precedence management (brackets) and

function calls (hardware functionalities like Circle)

Advantage: only relevant intermediate results get names (C,D)

Compress Representation by Expressions

5

Each sensible program or algorithm that based on some input I creates an output O, more formally each

machine implementation of a function or relation

𝑂 = 𝑓 𝐼

Can be given as the evaluation of an expression.

 𝜆-calculus

 Functional Programm

 R

 Scala

This compression is universal

6

This is called functional programming

Express the problem as a set of rules (e.g., equations in this case), maybe involving variables (𝜏, 𝜆). Such

programs are usually executed by a classical imperative implementation solving a certain family of

problems. SQL is one important example of a declarative „programming“ language

Related to:

- Integer programming, Constraint solving

- Numeric optimization

- Physical Planning (the transformation of a SQL query to an executable sequence of DB operations)

Another way of representing this algorithm

7

This is called declarative programming

Chapter 1.2.1 Written Addition

8

Define Addition of two one-digit numbers

Addition of Digits – Table Lookup

9

Note: In order to avoid having the

Adding Two n-digit numbers

10

Adding Two n-digit numbers

11

Complexity (a Naive Version of Counting Lines)

12

N+1 Times

A few

instructions

that don‘t

depend on N

N=a.size()3

5

2

We say, this algorithm has complexity O(N)

More formally

𝑓 ∈ 𝑜 𝑔 :⇔ ∀𝑐>0∃𝑥0>0∀𝑥>𝑥0 𝑓 𝑥 < 𝑐|𝑔 𝑥 |

Interpretation:

A function is 𝑜 𝑔 if for large enough arguments f(x) is bounded by a constant times 𝑔(𝑥)

Less formally

„In the end (for 𝑥 → ∞), f grows slower than g“

More formally

𝑓 ∈ 𝑂 𝑔 :⇔ ∀𝑐>0∃𝑥0>0∀𝑥>𝑥0 𝑓 𝑥 ≤ 𝑐|𝑔 𝑥 |

Same, but now:

„In the end (for 𝑥 → ∞), g grows slower or equally fast as compared to f“

Landau-Symbols (Lower bounds)

13

Conversely

𝑓 ∈ Ω 𝑔 :⇔ ∀𝑐>0∃𝑥0>0∀𝑥>𝑥0𝑐 𝑔 𝑥 ≤ |𝑓(𝑥)

Less formally

„In the end (for 𝑥 → ∞), g grows slower than f“

Finally (for us)

𝑓 ∈ Θ 𝑔 :⇔ 𝑓 ∈ 𝑂 𝑔 ∧ 𝑓 ∈ Ω(𝑔)

Same, but now:

„In the end (for 𝑥 → ∞), g grows slower or equally fast as compared to f“

Landau-Symbols (Upper Bound)

14

Let 𝑓 denote the number of steps of our addition program on a certain computer. Then

𝑓 𝑥 = 4 + 5 𝑁 + 1 = 4 + 5N + 5 = 5N + 9

On a different computer, maybe the cout is not counted as a single instruction (as in our strange machine),

but itself as 42 instructions for really preparing the output.

Then

𝑓 𝑥 = 4 + (42 + 4) 𝑁 + 1 = 46N + 50

In both cases (that is kind-of independent from the details of the machine) both algorithms are

𝑓 ∈ 𝑂 𝑁

Conversely, we know that – independent of the machine – each digit must be written. That is, at least N

instructions (assuming that a write is O(1)) are needed to create the output, hence,

𝑓 ∈ Ω 𝑁

In summary, we conclude

𝑓 ∈ Θ 𝑁

Applied:

15

Chapter 1.2.2 Insertion Sort

16

17

Insertion Sort

18

A formal discussion of this algorithms follows when

we look more closely into sorting.

Example Process Flow

19

