
Principles of Programming

Martin Werner

Dec 02, 2022

CONTENTS

I Basic Knowledge 3
1 The Disk Operating System (DOS) 5

2 Automation in Windows 9

3 Microsoft Windows 11

4 Unix, Linux, and POSIX 15
4.1 POSIX . 16
4.2 Linux as seen by a user . 18
4.3 Example: Processing data in a Linux environment . 19

5 Imperative Programming 23
5.1 A Robot Model of Intrinsic Instructions . 23
5.2 Procedures . 24
5.3 Ports and Functions . 24
5.4 Control Structures . 25
5.5 Scopes . 25
5.6 Memory . 26
5.7 Variables . 26
5.8 An example robot program sketch . 27

II Python 29
6 Python basics 31

6.1 Table of contents . 31
6.2 Data types . 33
6.3 Naming conventions . 34
6.4 Arithmetic operations . 35
6.5 Boolean operations . 36
6.6 Comparisons . 36
6.7 While loop . 46
6.8 For loop . 47
6.9 Break and continue . 49
6.10 Importing modules . 52

III Geospatial Images 59
7 Geospatial Raster Images - The GDAL Library 61

i

8 Learning Steps: 63

9 Reference Information beyond the scope of this lecture 65
9.1 Installation . 65
9.2 Docker File . 65
9.3 Container Run . 65

10 GDAL Primer 67
10.1 The Dataset Object . 67

11 Raster Bands 69

12 Reading from the Raster 71

13 True Color Snippet 75

14 Conclusion 77

IV Libraries and Stories 79
15 Reading and Writing PLY files (point cloud example) 81

16 happly and boost geometry - Load Point Clouds in C++11 85

V Tutorial Assignments 91
17 Tutorial No. 1 - Check your knowledge 93

17.1 Basic Computer Knowledge . 93
17.2 Spatial Data Exposure . 94
17.3 Spatial Tools . 94
17.4 Algorithms Knowledge . 94
17.5 Special Aspects you want to see covered . 95

18 Task Sheet 1: Niki the robot 97
18.1 Learning Outcome . 98
18.2 Task 1: Doubling Numbers . 98
18.3 Disclaimer . 98
18.4 Task 2: Staircase . 98
18.5 Task 3: Storage . 99
18.6 Task 4: Waste Collection . 99
18.7 Task 5: Tunnel . 100
18.8 Task 6: Signs in the world . 100

ii

Principles of Programming

Download as PDF
Principles of Programming is a one-semester master course building on profound knowledge of object-oriented design,
programming in Java, and geospatial data in all its forms by adding aspects of software engineering, the high-performance
language C++ (in its modern form) and Python.

Material

• Lecture 1: Basics / States / Operating Systems / Command Line
– The Disk Operating System (DOS)

– Microsoft Windows

– Unix and Linux

• Lecture 2: Imperative Programming
– Imperative Programming

– Python

• Lecture 3: Imperative Programming II
– Live Notes (Notebook)
– Tutorial: Niki the Robot

– Script Algorithms

– Slides Algorithms

– Slides Recursion

– Tutorial on / with numpy
– Completion of Python Syntax and Data Structures, material above

• Lecture 4:
– Notebook

• Lecture 5: Geospatial Images
– GDAL Introduction
– GDAL for a Cloudfree Cover of Germany
– Download Link (Germany) - needs to be fixed

Background and Context

Principles of Programming is an advanced (master) course in the study program Geodesy and Geoinformation. This
course assumes very good knowledge of at least one object-oriented programming language (typically Java), object-
oriented design and data modeling (UML, etc.), as well as geospatial data and basic geodata algortihms.
Based on this knowledge (which is typically taught in the Bachelor degree program at Technical University of Munich,
the aim of this lecture is described as

With this course, students are enabled to solve their geodetic problems using programming. They obtain a
working knowledge of programming languages, algorithms, software patterns and libraries needed to solve
complex computatoinal problems.

CONTENTS 1

https://api.bgd.ed.tum.de/germany.tiff

Principles of Programming

in the module definition and we give the following framework of aspects that we have to cover:
In this course, students are introduced to advanced programming and algorithms with examples in Python
and C++. It shall as well include some examples from computational geometry, point cloud processing,
image analysis, etc. to - at the same time - introduce canonical patterns or even core libraries for working
with data from subfields of geodesy.

• Python, numpy, tensorflow
• C++11, generic programming (beyond object orientation which I expect them to “roughly” know)
• Python & C++ interaction
• Various Data Structures and techniques

Time Plan

This lecture is organized into thirteen units out of which you can influence quite a few depending on the previous knowledge
in the group and the interest.
First the dates in 2022/23:

Date Topic
18.10.2022 Lecture + Tutorial
25.10.2022 Lecture + Tutorial
01.11.2022 Public Holiday
08.11.2022 Lecture + Tutorial
15.11.2022 Conflict (in resolution)
22.11.2022 Lecture + Tutorial
29.11.2022 Lecture + Tutorial
06.12.2022 Lecture + Tutorial
13.12.2022 Lecture + Tutorial
20.12.2022 Lecture + Tutorial

Christmas Break

10.01.2023 Lecture + Tutorial
17.01.2023 Lecture + Tutorial
24.01.2023 Lecture + Tutorial
31.01.2023 Lecture + Tutorial
07.02.2023 Lecture + Tutorial
———– ——————–

Modules

tba

2 CONTENTS

Part I

Basic Knowledge

3

CHAPTER

ONE

THE DISK OPERATING SYSTEM (DOS)

In order to fully understand Microsoft Windows and in order to get to advanced usage capabilities, it is unavoidable to
understand, howMicrosoft Windows has emerged. In the old days of computing, a company namedMicrosoft introduced
an operating system known as Disk Operating System (DOS) which was used to run most personal computers in these
days. From a user perspective, this operating system did all the work of starting up the computer and configuring hardware
and running programs. Therefore, a command line was designed and equipped with programs and technology to support
basic computing tasks.
MS Dos was a single tasking operating system (except TSRs, which have been small programs that were able to run in
the background). This dictates the logic under which interaction with MS Dos is cut into sequential steps. In a nutshell,
the computer tells the user that it waits for an instruction by showing a command prompt.

C:\>

The user is then supposed to enter a command which then runs a program or a builtin instruction. Only four types of
information are available to both the user and programs:

• The current working directory (CWD) which is a combination of a drive and a folder relative to which all file
operations are performed

• A set of environment variables, such as the %PATH% variable
• The name of the program and a space-separated list of arguments to the command

In this context, the DOS provided a set of commands for working with these states and software vendors could provide
additional programs. While DOS can be considered history, all current Windows versions include a Command Prompt
feature, which provides a DOS-like command line to perform tasks on Windows computers. For an overview, we list a
few DOS commands and ask you to explore them yourself on a Windows computer (or in FreeDOS in a virtual machine
like Virtual Box).
Each command starts with the name of the command or program and a set of arguments where arguments starting with
a “/” are considered switches that just influence the behavior. Many file-oriented commands allow you to use wildcards.
A wildcard in a string matches zero or more character (*) or exactly one unspecified character (?). For more clarity:

• stat*.bat would match status.bat as well as stat.bat
• data?.dat would match data0.dat, but not data10.dat

Basic programs
• <drive letter>: to change the drive
• CD to change the directory
• DIR to list a directory, consider switches /P and /S which change the behavior
• MD to create a directory
• RD to remove a directory (only if empty)

5

Principles of Programming

• TREE shows all files below the current working directory
• ATTRIB show and modify attributes like write protection on files
• COPY is used to copy files
• DEL deletes files (synonymous with ERASE)
• EDIT provides a simple editor (EDLIN before MS DOS 6.0)
• FIND searches for a string in a file
• MORE pages a file to the screen
• MOVE moves a file to a different location
• PRINT is used to print a file
• REPLACE works like copy but replaces the file in the target
• TYPE outputs the whole content of the given file
• XCOPY extends COPY to be able to copy whole directories and trees
• CLS clears the screen
• DATE shows and modifies the date
• TIME shows and modifies the time
• ECHO is used to control whether commands are shown or not (mainly in batch files)
• FDISK is used to set up hard disks (partitions, etc.)
• FORMAT organizes a file system on floppy disks or hard disk partitions
• HELP shows help for a dos command (use it in the tutorial!)
• SET shows configuration information and environment variables and modifies them
• VER shows the version of DOS in use

With these commands, it is possible to organize a computer quite nicely yet remaining simple and self-explaining. Another
interesting aspect about DOS which is visible in modern versions of Windows is the fact that file names were heavily
restricted in early versions allowing 8 characters for the file name and 3 characters for the file name extension separated
with a dot. Extensions have always been used to mark the type of file, for example article.txt was a text file suitable for the
edit program while word.exe was a program known as Word which could be run by writing the command word (without
the extension) when in the same directory or when the directory was mentioned in the PATH variable.

Note: Assignment 1:
• Install VirtualBox and run FreeDOS inside
• Using the FreeDOS command line, create a folder structure representing Germanys federal structure. Start by
creating a folder Germany, within this folder, create one for each state.

• In each state, create a file capital.txt and write into it only the name of the capital of the state in one line (be sure
to end the line)

• Show the tree (and submit as a solution) using the command line
• (Advanced) Output all member states
• Learn about the redirection of output using the > pipe

6 Chapter 1. The Disk Operating System (DOS)

Principles of Programming

• Look around on your Windows PC if you have one. Where is your data stored technically, where is Documents
located? Where are Downloads? Try to find out about this by just running the “Command Prompt” or “Eingabeauf-
forderung” in German language.

• Create a file on the Desktop of your Windows Computer, use the extension .txt and write Hello Windows into it.
Then open the file with the Windows GUI which should spill up your favourite editor.

DOS used drive letters A, B, C, etc. to distinguish different disks. In the very early days, one typically had no hard drive
in an MS DOS computer, but one floppy disk. This disk was known as A and all the life was taking place in A:>. A
bit later, many computers came up with a second floppy drive. Now, the drive A was used to start the operating system
(DOS) and provide commands, while B:> was used to store data. As floppy disks are sometimes usable (when a valid
disk has been inserted) and sometimes unusable, both letters are reserved up to today. Typically, the first drive letter
assigned to hard drives or other modern devices is, therefore, C:>. In almost all versions of Windows today, Windows
is installed on a drive with letter C. If the main drive has more partitions, drive letters are used sequentially, such that a
two-partition setup often has a drive D:>. On many other computers, D: already refers to some CD drive or USB stick.
In a nutshell, drive letters are assigned along the alphabet and as the first two letters are reserved for floppy drives, the
first letter in every-day use is C. As a consequence of this unknown dynamics, it has become a tradition to map the first
network drive with the letter Z and to continue backwards (if you are in a network-enabled environment). Furthermore,
some companies have started to use a drive called H like “Home” for the home drive of a user.

Note: Assignment Two: Install Windows (at least once)
Windows Installation Tutorial. When you start working withWindows a lot, you will face the situation that your computer
is not working properly anymore. In this tutorial (accessible only for people with a valid Windows license), we will install
Windows into a virtual machine to train the procedure. In order to help you for your future, we ask you to do this on a
virtual disk of 20 GB (use a FCOW disk to save space) which you partition into three disks: Disk C (the main Windows
disk) shall use 10 GB, while a drive D of 5 GB and a drive E of 5 GB shall be available as well. Therefore, you can use
the partitioning tool part of the Windows installer. We will use Windows Education 11, but the procedure is not much
different for any (unmodified) Windows.

7

Principles of Programming

8 Chapter 1. The Disk Operating System (DOS)

CHAPTER

TWO

AUTOMATION IN WINDOWS

Since the beginning (including MS DOS), the builtin functionality can be used to automate routine tasks to some extent.
In Windows, batch files are being used. In their simplest form, batch files just list a sequence of commands to be executed
one after another. But batch files can have more aspects such as looping over files, asking for user input and other advanced
patterns. As many of our students will be exposed to a Windows with no access to advanced scripting software, it is worth
knowing some basic aspects of how to write batch files on Windows.
As said, a batch file is just a text file in ASCII format and each row of the file represents a command which you could as
well type into the command prompt. However, it gets more interesting if one realizes the following three functionalities:

• Disabling the output
• Looping over files
• Using arguments given to the batch file

The first aspect is simple, but important: in basic batch files, each command is first output before the command is executed
and the output of the execution is output. This means that it is a bit tricky to have concise output from a batch script
which is really useful for the user. In a batch file, the output of a command can be suppressed by prefixing it with @ why
it is good practice to start all batch files with a line

\@echo off

The output of this line is suppressed (it would typically output “ECHO is disabled”) and the output of commands is
disabled for the remainder of the script.
Now, it is very common that batch files are used to automate annoying commands to avoid typing and thereby avoiding
typos as well. Imagine you are working on satellite images and you have downloaded 1,000 scenes from Sentinel 2. As
you want to create a web map, you decided to reproject all of these files from their own projection into a WebMercator
projection (EPSG 90009001). You figured out the right parameters for letting gdal_warp utility doing your work, for
example

gdal_warp \<scene\> -t_srs ... (please figure it out yourself!)

Then, you can use a batch file like this one:

\@echo off
for %%f in (*.tif) do (
gdal_warp \<magic parameters here\> %%\~nf output/%%\~nf
)

This file takes all files with extension tif in the current directory and gives them as input to our magic gdal_warp command
while putting the result into the same file, but in a directory output. Hence, be sure to have this directory created (or make
the creation of this directory part of the batch script itself). In this way, you can now have a lot of coffee or go to bed
while your computer is working through your archive of data.

9

Principles of Programming

Note: Assignment Three: Writing Batch Files
Create a batch file which reproduces the result of Assigment One. A batch file in Microsoft DOS andWindows is a simple
ASCII text file with an extension of .BAT. Those files can be run from the command prompt just like EXE files by giving
their name without extension. Use the @ECHO OFF as the first line to suppress the output of the individual programs.
Explore on your own using the Internet, how one can get input from the user into a variable, how one can loop over files
running a certain command for each file.

Note: Assignment Four: Learn some Latin
We will write a batch file program to train latin vocabulary. Therefore, we create a file with the latin name containing the
translation (followed by a newline). Then, try to write a script that first selects a file at random (or any other way) and asks
(by showing the filename representing the latin vocabulary). Then ask the user to input and (!maybe!) try to compare
the user input with the file contents at least roughly. Note that this can be really tricky in BATCH programming, so any
approximate solution is appreciated.
*Just some tips: To make it less complex, the solution to this task was not comparing the results, but rather showing the
user input and the translation from the file. Further, we create two Batch files: one which loops over all files and another
one which is called with the filename and presents a short dialog. *

Note: Assignment Five: Reproject Sentinel Scenes
Download a handful of Sentinel scenes from different locations, install GDAL and use the gdal_warp command line utility
to bring all the files into the same projection.

10 Chapter 2. Automation in Windows

CHAPTER

THREE

MICROSOFT WINDOWS

TheWindows operating system has then emerged as a graphical user interface (GUI) on top of DOS. In its early versions,
it was a graphical file manager, but the most important innovation was available with Windows 3.x, namely, an interaction
scheme in which the graphical screen is subdivided into rectangular Windows with the following properties

• Windows can overlap each other
• Exactly one Window is active
• The active Window is in the front (fully visible)
• Windows can be resized and moved on the screen
• Windows provide buttons for minimizing, maximizing and closing the Window

In fact, a Window today looks like this editor window from the integrated Windows Editor Notepad:

Windows typically have more standardized aspects such as the following ones. Each Window has a Title line which
contains an optional Icon (which is a menu) followed by a text (the Window title) and the three buttons on the right for
minimizing, maximizing and closing the Window. Below the Title, a menu bar is located in which multiple text fields
are displayed. When you click on them, a window is opened and can be navigated to send a command to the application.
The bottom line (optional) is known as a status line and typically contains a few controls, at least one text. The remainder
is called the Client Area and is used by the application.

11

Principles of Programming

In order to give you a more in-depth understanding, let us look at the principle of writing programs for MS Windows. A
normal program is started, this one asks the Operating System to open a window with certain properties (size, location,
etc.). One of these properties is a function which is then called by the operating system with events such as the following
ones:

• WM_CREATE: Is sent when the Window is created
• WM_DESTROY: The window is destroyed
• WM_MOVE: The location has changed
• WM_SIZE: The size has changed
• WM_ACTIVATE: The window has become active
• WM_QUIT: The X has been clicked (or an equivalent hotkey was activated)
• WM_PAINT: Draw the client area (however this is done)

Without expecting everyone to understand completely at the first time you read this article, here is a complete Windows
API example drawing a rectangle. It is written in the C language we will learn, and serves as a primary example. It has
been made available at Github and is referenced by the MSDN as well MSDN Article on WM_PAINT

#ifndef UNICODE
#define UNICODE
#endif

#include <windows.h>

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

int WINAPI wWinMain(HINSTANCE hInstance, HINSTANCE, PWSTR pCmdLine, int nCmdShow)
{

// Register the window class.
const wchar_t CLASS_NAME[] = L"Sample Window Class";

WNDCLASS wc = { };

wc.lpfnWndProc = WindowProc;
wc.hInstance = hInstance;
wc.lpszClassName = CLASS_NAME;

RegisterClass(&wc);

// Create the window.

HWND hwnd = CreateWindowEx(
0, // Optional window styles.
CLASS_NAME, // Window class
L"Learn to Program Windows", // Window text
WS_OVERLAPPEDWINDOW, // Window style

// Size and position
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

NULL, // Parent window
NULL, // Menu
hInstance, // Instance handle
NULL // Additional application data

(continues on next page)

12 Chapter 3. Microsoft Windows

https://github.com/microsoft/Windows-classic-samples/blob/18cbd05ee44455cd7552804dcf2c9d6db619b412/Samples/Win7Samples/begin/LearnWin32/HelloWorld/cpp/main.cpp
https://learn.microsoft.com/en-us/windows/win32/gdi/wm-paint

Principles of Programming

(continued from previous page)

);

if (hwnd == NULL)
{

return 0;
}

ShowWindow(hwnd, nCmdShow);

// Run the message loop.
MSG msg = { };
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return 0;
}

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

switch (uMsg)
{
case WM_DESTROY:

PostQuitMessage(0);
return 0;

case WM_PAINT:
{

PAINTSTRUCT ps;
HDC hdc = BeginPaint(hwnd, &ps);

// All painting occurs here, between BeginPaint and EndPaint.
FillRect(hdc, &ps.rcPaint, (HBRUSH) (COLOR_WINDOW+1));
EndPaint(hwnd, &ps);

}
return 0;

}

return DefWindowProc(hwnd, uMsg, wParam, lParam);
}

This very clearly illustrates what is happening: The program creates a new Window which refers to a function in our
program (WindowProc) and this function is called by ourselves with all messages we can Peek and Dispatch in our
main program.
The nature of an event-driven system is that after a lot of initialization, the main progress of the system follows an event-
driven nature: an ordered sequence of information (called events) will dictate the behaviour.
By the way, this is also the core reason why sometimes windows are hanging and not reacting: This happens, when
messages like WM_PAINT or WM_CLOSE are not delivered, because the event loop is not running properly. Windows
typically blurs out the Window and shows a dialog about this problem.
As a consequence, good programs will have to make sure that all messages are quickly handled maybe by making other
parts of the program proceed asynchronously, for example in a thread.
It is interesting to see how a concurrent impression has been created by using the graphical user interface, which is

13

Principles of Programming

inherently non-parallel: there is only one active program at a time.

14 Chapter 3. Microsoft Windows

CHAPTER

FOUR

UNIX, LINUX, AND POSIX

The Linux family of operating systems has been improving in importance in the last decades. The project started as an
illustrative implementation of a simple UNIX kernel on top of the 80386 computer and is now the leading operating
system in terms of global impact.
In order to understand Linux, one has to look back into the history as well. Linux is modeled after Unix which is a family
of operating systems developed for mainframes. Such computers have been very expensive and available long before the
personal computer was available, but a single UNIX mainframe was used by many members of a company.
Hence, topics like user management, access control and parallel execution of different things (for different users) have
been at the heart of Unix development, while the simplicity (despite all risks) of the DOS immediate mode was not
accessible.
At this point, before looking into the guiding principles of Unix and Linux, we can mention a name here: the basic Unix
was mainly developed by Ken Thompson and Dennis Ritchie who has also had huge impact on the development and
success of the C programming language. In fact, Unix has been implemented mainly in assembler (a rather raw machine
language with almost no abstractions), but later translated in large parts into the C language. And this is one of the earliest
predecessors of the programming language we will focus on.
Furthermore, a few principles have been fixed in the early days and have proven successful enough not to be changed that
much in the years to come. This group of decisions is referred to as the Unix philosophy, which we will revisit when
talking about software and programming.
A famous formulation of the Unix philosophy is due to Douglas McIllroy:

• Write programs such that they do only one thing and they do it well
• Write programs such that they can work together
• Write programs such that they work on textual streams as this is the universal interface

This is often oversimplified to
Do only a single thing at a time and do it well

Or (more or less the same) as the KISS principle:
Keep it simple stupid.

There is a lot to these aspects and we will learn a lot about it. More down to the point, Mike Gancarz gives the following
list

• Small is beautiful.
• Make each program do one thing well.
• Build a prototype as soon as possible.
• Choose portability over efficiency.
• Store data in flat text files.

15

Principles of Programming

• Use software leverage to your advantage.
• Use shell scripts to increase leverage and portability.
• Avoid captive user interfaces.
• Make every program a filter.

This will guide our gentle introduction to Linux in the sequel.

4.1 POSIX

Unix has led to a joint understanding of how computers should work and it has been very successful. But it has also
quickly become an area of debate (see Unix Wars). In order to unify and converge the market, a new standard has been
carefully designed and developed (ISO/IEC/IEEE 9945) under the name POSIX.
This standar describes clearly and independent from a concrete implementation defintions of terms, the system interface
(concretely in C language including header files), and the command line interpreter and a list of tools.
When learning C (or any other modern language), one will often touch exactly this standard even in a non-Unixoid
environment (like Windows).
We will now skip over the definitions and the header files, as they naturally appear when learning programming, but jump
right ahead to the list of mandatory utilities that you can expect any unix-like operating system to provide:
For a complete list, please refer to https://pubs.opengroup.org/onlinepubs/9699919799/idx/utilities.html
For our first interaction with these systems, we selected

• ar (nowadays often tar for tape archiver)
• at
• awk
• basename
• bc
• cat
• cd
• chgrp
• chmod
• chown
• compress (nowadays, bz2 and gzip)
• cp
• cut
• date
• dd
• df
• diff
• dirname
• du

16 Chapter 4. Unix, Linux, and POSIX

https://pubs.opengroup.org/onlinepubs/9699919799/idx/utilities.html

Principles of Programming

• echo
• ed
• env
• ex
• expand
• expr
• false
• fg
• file
• find
• fold
• getopts
• grep
• head
• iconv
• id
• jobs
• join
• kill
• ln
• ls
• man
• mkdir
• mkfifo
• more
• mv
• nl
• paste
• patch
• printf
• ps
• pwd
• read
• rm
• rmdir
• sed

4.1. POSIX 17

Principles of Programming

• sh (nowadays often bash)
• sleep
• sort
• split
• tail
• tee
• test
• time
• touch
• tr
• true
• ulimit
• umask
• uname
• uniq
• unlink
• vi (nowadays vim)
• wait
• wc
• who
• xargs
• zcat (gzcat, bzcat)

Note: Install a Linux, preferably Debian (with no tasks selected, video follows), and login to the system with the user
account you created during installation. Then, inform yourself about the commands using the man command.

4.2 Linux as seen by a user

In order to understand Linux, we need to understand the command line version of it. With Linux being a multiuser
operating system, our adventure starts with logging in to Linux by giving a username and its associated password. Then,
we end up with a command line, most typically running the Bourne Again Shell (bash).
Similar to the DOS command line, the system now waits for your instructions and gives you some state information like
the current working directory (PWD on Linux, accessible with the pwdcomamnd). Again, you can now use the programs
given to start working with a Linux computer.
First, we will have to navigate the system and in Linux there is no concept of drive letters. Instead, there is one file system
root (/) and from there the journey begins.
We can move around by using cd, we can as well use the special directories . to refer to the current directory and .. to
refer to the parent directory in the relevant contexts.

18 Chapter 4. Unix, Linux, and POSIX

Principles of Programming

Note: Navigate to the main directory, then from there into the bin directory. This directory traditinoally holds user
programs. By using a pipe character, you can make the output of a program becoming the input of another such that ls
| less will let you page through all programs in the installation.
Navigate to /home. Show all directories using ls. This should now have one directory per user. Enter whoami to find out
your user name.
Navigate to /etc, where Linux configuration is held. All programs should keep their configuration there as a plain text file.
Look at the file /etc/fstab using an editor of your choice (vi, vim, emacs, nano).
Navigate to /proc. This holds kernel information and files to interact with the kernel. Look at /proc/meminfo,
/proc/partitions and /proc/meminfo to find some information about your computer.

4.3 Example: Processing data in a Linux environment

As long as you stick with the Unix principles, Linux provides sufficient tools for 99% of your everyday tasks as a data
scientist. No advanced software or programming is required in this context.
In order to illustrate the line of thinking, let us perform a rather simple task: count the words in the definition (RFC) of
the HTTP protocol available from RFC

curl https://www.rfc-editor.org/rfc/rfc2616.txt > 2616.txt

will just download the document. To simplify the remainder, we create a local copy, so be sure to be in a reasonable
directory (maybe create one) first.
In order to find the most frequent word, our task is now to break it down into individual words. We do this by relying on
the tr tool. Read the man page, but we just turn every space into a newline:

cat rfc2616.txt | tr " " "\n"

In this command, the file is first output to stdout, but this standard output is bound to the standard input of the tr command.
This takes every space (first argument) and turns it into a newline. The output is ugly and long (would keep scrolling for
quite some time), hence, we can rely on head to see part of it

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | head -10

Network
Working
Group

martin@martin:~/lecture$

Okay, this looks nice, but empty lines will be dominating (this happens, because there are a lot of spaces in the document
for layouting page numbers). Let us get rid of empty lines as follows (this is tricky, we will discuss this in the tutorial)

4.3. Example: Processing data in a Linux environment 19

https://www.rfc-editor.org/rfc/rfc2616.txt

Principles of Programming

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪head -10

Network
Working
Group
R.
Fielding
Request
for
Comments:
2616
UC

Now, we can start counting the words. The easiest way to do this is to sort the output using sort and then use the uniq
-c command to remove successive equal lines outputting the count of removed lines. Let us again limit the amount of
screen usage with head:

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪sort |uniq -c | head -10

1 "
1 ""
1 ""%"
1 "#"
1 "%
3 "("
2 ")"
1 ")">

26 "*"
3 "*",

Here, now the first column shows the number of times a string has been seen and we need to find the largest ones. We
do this by sorting again, but numerically using sort -g and reversing the direction. As we might be unsure whether it
works, we can again work on reduced outputs by keeping the head in the command.

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪sort |uniq -c | head -10 | sort -rg

26 "*"
3 "*",
3 "("
2 ")"
1 ")">
1 "%
1 "#"
1 ""%"
1 ""
1 "

Now, we are almost there: Let us now really look for the ten most frequent words in RFC 2616:

martin@martin:~/lecture$ cat rfc2616.txt |tr " " "\n" | sed '/^[[:space:]]*$/d' |␣
↪sort |uniq -c | sort -rg | head -10
3532 the
1579 a
1349 to
1298 of

(continues on next page)

20 Chapter 4. Unix, Linux, and POSIX

Principles of Programming

(continued from previous page)

1006 is
829 and
773 in
661 that
653 be
550 for

martin@martin:~/lecture$

When you take your time to learn a few (if not all) of the core utilities (GNU coreutils), you can solve almost all problems
based on text files considerably faster than with any other environment.

4.3. Example: Processing data in a Linux environment 21

https://www.gnu.org/software/coreutils/manual/html_node/index.html

Principles of Programming

22 Chapter 4. Unix, Linux, and POSIX

CHAPTER

FIVE

IMPERATIVE PROGRAMMING

Programming is the principles procedure of telling a computer what it is supposed to do and there are various programming
styles that can be used to program computers. However, the most widely used and most basic style of thinking of
computers is the paradigm of imperative programming.
Imperative programming matches very well the nature of computers being rather dumb and simple machines. In imper-
ative programming, the programmer takes the role of an imperator and provides instructions to the computer in a very
precise ordered form. These instructions come from a comparably small set of instructions which the computer must
support.

5.1 A Robot Model of Intrinsic Instructions

A very basic model of a computer can be imagined as a small robot that has two functions: turn right by an angle
of 𝜋/2 and go one step into the direction currently looking at. When building such a machine, one immediately also
designs a programming language which has two operations (we call them intrinsics, because they are the operations really
implemented in hardware). Let us give names to them: move for moving one step, and turn for turning left by 𝜋/2.
Now an imperative program is very much like a shell script: from the language that we have defined, we can create a text
file with one intrinsic instruction per line (this form of machine code is typically called assembler).
The program

move
turn
turn
move

would thus be interpreted as an imperative program like: first move into the direction you are facing, then turn to the left,
then turn again to the left, then move again.
So far, we have introduced a few concepts that should be highlighted:

• intrinsic instructions are those steps that a physical computing machine can perform immediately
• Each intrinsic instruction gets a name
• A series of intrinsic instructions can be written into a file which is an imperative program and interpreted as a
sequential instruction

Let us reflect a bit more on the situation of such a robot. In a certain sense, the previous program does define very precisely
what the robot is supposed to do, but neither in which state (location and orientation) it has been in the beginning nor
in which state it is afterwards. In fact, each operation is well-defined local to the robot (we know how the wheels are to
be moving), but not well-defined with respect to the robot in the world. Therefore, we would need to give or fix initial
conditions.

23

Principles of Programming

For a real imperative program, these intiial conditions are the state that is held in the operating system about the program,
for example, the current working directory (CWD).

5.2 Procedures

A very typic additional definition in an imperative programming setting is the notion of a procedure. A procedure is an
imperative program (e.g., a sequence of instructions) such that this sequence can be referred to as a new operation in the
programming language. These are the so-called non-intrinsic operations.
For our robot, the following program

turn
turn
turn

means to turn left for three times. This, of course mimicks the result of turning right. In many programming languages,
there is a way to make this a new instruction of the language called a procedure.

proc turnright:
turn
turn
turn

Our minimal computer (the robot) with its tiny set of intrinsic instructions (move and rotate) can now be programmed
with a third instruction turnright

5.3 Ports and Functions

As a next step in the co-evolution of a computer and a programming language, one might want to be able to react on
real-world input, that is, something coming from outside the robot. For a robot, we could imagine a sensor that just tells
us whether the place we would move to is occupied or not.
That is, we extend our hardware with something we will call a port as it brings external information into the system. And
we will extend the programming language with an intrinsic function to model this port.
A function is a procedure in the sense that it can be run and that it can be built together from other instructions and
functions, but it returns a value. For the case of the port letting us experience the next location being occupied, this
return value can have two states: occupied or not occupied. Due to the huge impact of George Bool on the behavior of
such values (this British mathematician passed away already in 1864 long before digital computers have been realized),
any two-valued information in a computer is called a Boolean value or bool for short.
Concretely speaking, a function would now look like is_empty and when this is called it would turn into the current
value associated with the hardware port.
Now, with having ports, we can observe aspects of the surroundings (information exterior to the system itself) and in
order to react to them, two aspects are introduced in imperative programming:

• control structures and
• expressions

24 Chapter 5. Imperative Programming

Principles of Programming

5.4 Control Structures

As we are still looking for a minimal programming language, we could imagine that our robot is supposed not to crash
with the surroudings, so maybe we just need to be able to make instructions like move conditional to the value of the
port.
This control structure is often nown as if .. then .. else .. More concretely, we enable the following snippet of source
code:

if is_empty then move else turn

This program would now always first check the condition of the if (run the intrinsic function) and if move is possible, it
would move and if not, it would turn in the hope that we can move afterwards.
To complete this exposition of minimal control structures, there is another common way to use boolean information in
imperative programs: to control the repeated execution of something. To this end, we introduce a loop called while:

while is_empty do move done

This means: as long as it is possible to move, continue moving. Note that by introducing a Boolean function, we would
typically also introduce the two Boolean values as constants for our programs. They are typically referred to as true and
false, hence, we can also write

while true do
while is_empty do
move

done
turn

done

5.5 Scopes

Another concept we silently introduced in the previous example is the idea of scopes. It is so common that within a
conditional branch or a loop multiple instructions need to be placed that we try to avoid to introduce a function for it.
Because if we had to, we would make things into functions that are used only once. As an alternative, a scope is introduced
which is a sequence of instructions that is taking the role of a single instruction like the loop body (what to do as long
as a condition is true) or the two branches of a conditional information (what to do when the value is true, what to do
otherwise).
Scopes have varying notations: sometimes with braces (C++, Java)

{
move
turn
}

sometimes with indentation (Python)

while true:
move
turn

sometimes with barrier words (Bash)

5.4. Control Structures 25

Principles of Programming

while true do
move
turn
done

sometimes with round brackets (DOS/Windows BAT files)

(
)

But they all serve the same purpose of quickly and locally (on the screen in the right location) bundling together instruc-
tions.

5.6 Memory

Now, this very small robot can be extended further to interact with a physical world. As you may have noticed, the robot
is currently limited to a grid of points it can reach as we only implement movement by 𝜋/2. Assume now, we give the
robot some small things it can deposit into the grid cell he is currently in, and then also sense, and maybe even pick up.
That is, we extend the robot device with three functions represented by three intrinsics:

• a function deposit to put something into the current cell. Let us assume that it fails if the cell is already filled with
such an item.

• a function pick to clean the current cell
• a function has_item to check if the current cell is filled with an item.

With these three intrinsics, we can write a lot of algorithms and it can be fun. The interesting aspect is that the 2D world
provides us with the ability to have a concept like a variable.

5.7 Variables

A variable is an area of memory to hold information together with an interpretation associated with this information. For
the 2D robot case, a variable is often such a thing as a stack of items like in the following drawing. The identity of the
variable being the column in the grid while the value is the height of the stack.
In all imperative programming languages, the idea is similar: there is an axis of varying identity (think like rows in a
table) and each variable typically has a name (just a string) in order to use it. The second axis in programming languages
describes together the amount of space that is needed and the interpretation of the space. For example, you can have a
32 bit integer number (reserving 32 bits = 4 bytes of memory) assigned an identity like i or the same amount of memory
for a 32 bit floating point number f.
In high-level languages, it is not uncommon that variables are accessible by name during runtime, in lower level languages,
the names are only available during compilation and will be removed (for efficiency) while compiling the source code to
a executable.

26 Chapter 5. Imperative Programming

Principles of Programming

5.8 An example robot program sketch

Assume we have our robot being on the lowest block of a tower of blocks each with a marker. Let us assume, we want to
interpret the height of this tower as an integer number, say h like height. Let us assume further, we want to compute the
value 2h. How would we proceed?

5.8.1 Algorithm Design

It is pretty clear and intuitive, how the robot can solve the problem: For each marked block, it creates two marked blocks
somewhere else. More concretely, let me lay down a proposal as follows:

• The robot starts on the lowest block of a tower
• The robot walks upwards to the highest block
• The robot picks up the marker (the tower has reduced in height by one)
• The robot goes down as long as markers are there (to the ground floor, so to say)
• The robot goes a step to the right
• THe robot walks up the tower as long as possible going to the first non-marked place
• The robot deposits a marker
• The robot goes up
• The robot deposits a marker
• The robot goes up
• The robot deposits a marker
• The robot goes down as long as possible
• The robot goes left (and is back in the state we want)

This needs to be repeated until we have taken the whole first tower.
Now, with this overview of the algorithm, we continue with an implementation strategy: there are quite a few things that
are semantically bounded in the sense that we can precisely and simply describe the state before and after a part of our
program. We could for example implement a procedure climb and use it twice: once to climb up the left tower and
once to climb up the second tower. Which tower to climb will just be based on the current location of the robot.
Our program skeleton grows slowly. In order to have a more narrative programming style, we introduce another idea of
programming, namely to put human readable text comments into the source code to illustrate some aspects and further
to use such comments to specify the expectations of implementations. Note that some modern programming languages
like C++ allow us to have such specifications during compilation in one or another way, but this is a rather new feature
and has not yet been voted into many standards. But the topic to keep an eye on is known as contracts.

function climb
precondition: the robot looks up
invariant: the robot keep the same X coordinate
postcondition: has_marker == false && has_marker @ below would be true
def climb:

needs to be written

Only with this contract information, it is possible to write a semantically correct climb function, especially the precondition
is requried: otherwise we would never know where we are going and the robot would need a compass or other means to
find its orientation.

5.8. An example robot program sketch 27

https://en.wikipedia.org/wiki/Design_by_contract

Principles of Programming

Let us complete this procedure at least:

function climb
precondition: the robot looks up
invariant: the robot keep the same X coordinate
postcondition: has_marker == false && has_marker @ below would be true
def climb:

while has_marker:
climb

Hence, we can start writing a part of our program completely assuming we are in the start location (bottom of left tower):

climb
turn
turn
move
pickup
climb # this now climbs down

Now we realize that our first intuition that there is a climb function is not a very good and compact one as we also have
to climb down. So let us update the precodnition

function climb
precondition: the robot looks up or down

We can then extend the program by going to the side

...
turn
move
turn

Now, we are one block to the side looking up again. We can then deposit markers twice:

climb # go up
deposit # marker one
climb # go up
deposit # marker two
turn #look down
turn
climb # walk down
turn # look back
turn
turn
move
turn # up in origin

This completes our imperative formulation with a function climb that we have used multiple times making it much easier
to use. And we have seen that even our simple robot can do computations (doubling an integer number represented as the
height of a stack of markers).
In fact, similar robots are used to teach programming. For example, Richard Pattis has introduced Karel the robot with a
very similar set of features as our imaginary robot and Nikolaus Wirth has popularized this in Germany as Niki the robot
Actually, I found that Niki is still available in a historic Windows version and it runs at least on my Windows 11. So
please go ahead and have a look at Niki the robot.

28 Chapter 5. Imperative Programming

https://de.wikipedia.org/wiki/Niki_%E2%80%93_der_Roboter

Part II

Python

29

CHAPTER

SIX

PYTHON BASICS

This tutorial gives a brief overview of the most essential features of Python. I recommend to additionally read (at least)
chapters 3, 4 and 5 from the official Python docs. Excellent Python tutorials are available at python-course.eu EN or
python-kurs.eu GER. Another tutorial starting from zero is available at inventwithpython.com When searching the web
for specific Python related topics, keep in mind that we are looking at Python 3.X.X. Python 2.7 is still very popular but
shows some major differences in comparison with Python 3.

6.1 Table of contents

Basic interpreter rules Variables [Data types / Naming variables] Operations [Arithmetic operations / Boolean operations /
Comparisons] Conversions Decisions Built-in data types [Lists / Tuples / Dictionaries / Sets] Loops [While loop / For loop
/ Break and continue] Functions Built-in functions Classes Assertions Common errors Catching errors Lambda expressions
Mixed topics

1. Execute code statement-wise (top to bottom)
• Statements are usually separated by linebreaks
1. Execute statements by evaluating all expressions
• Start with the most nested expression
• Follow precedence rules
1. Ignore comments (#), blank lines and whitespace

Terminology:
• Statements can be seen as the instructions, any program consists of.
• A statement consist of at least one expression.

Note:
• Cells are executed by selecting them first and then pressing [CTRL]+[ENTER] (in the Jupyter Notebook)
• The output of a cell will be displayed below the cell.

a = 1 # 1 expression: 'assign the value 1 to variable a!'
b = a + 1 # 2 expressions: 'compute the sum of a and 1!' and 'assign result to␣

↪the variable b!'
c = a + b - 1 # 3 expressions: 'a + b' and 'X - 1' and c = X
print(c) # 1 expression: 'call function print with argument c!'
print(c*10) # 2 expressions: 'c*10' and print(X)

31

https://www.python-course.eu/python3_interactive.php
https://www.python-kurs.eu/python3_interaktiv.php
http://inventwithpython.com/invent4thed/chapter1.html%3E

Principles of Programming

2
20

In Python the statements are usually separated by line breaks. Separating statements with a semicolon is also allowed
but less common / readable. The following two cells are equal in terms of the statements but differently formatted. The
arguments of print are texts (denoted by '):

print('Hello') # first statement
print('World') # second statement
.. blank lines are ignored
print('!') # third statement (.. white spaces between symbols / variables are␣

↪ignored as well)

Hello
World
!

statements separated be semicolons -> valid but less readable
print('Hello'); print('World'); print('!')

Hello
World
!

Multi line statements are less common but also possible in Python. To continue a statement in the next line, we add \
before the line break. Line continuation is also implied inside parentheses (), brackets [] and braces { }.

a = 1 + 2 + \
3 + 4 + 5

print(a)

b = (1 + 2 +
3 + 4 + 5)

print(b)

15
15

The most significant difference between Python and other languages is the mandatory indentation of blocks. Blocks
are grouped statements (e.g. used in loops, conditions or functions). The following cell will demonstrate the indentation
syntax. The if-keyword (details later!) introduces a block. Usually the indentation size is four spaces. Most IDEs (also
the Jupyter server) will convert tabs to spaces so we can use tabs as well.
A simple indentation rule is: Whenever a statement ends with a colon, (at least) the next non-blank line has to be
indented.

if True: # 'if' is here just used to introduce a block. Statements that introduce␣
↪blocks end with a colon!

print('Hello')
print('World') # two statements inside a block (indented with four spaces / one␣

↪tab!)
print('!') # outside the block (no indentation)

32 Chapter 6. Python basics

Principles of Programming

Hello
World
!

Additional information about indentation and blocks is available here.
When creating a variable in Python, the data type is usually not given explicitly. Instead Python will automatically detect
the variables type from the assigned value. To create and assign a variable the syntax is x = v, where x is the variables
name and v the explicid value or an existing variable. When a variable already exists, it will be overwritten (and possibly
also get a new data type). Note that variables in Jupyter Notebooks exist across all cells.

x = 1 # create x and assign the value 1
x = 3.5 # x already exists, so it will be overwritten with 3.5
y = x # create y and assign the value of x
x = y = z = 1 # it is valid to assign a value to multiple variables
x,y,z = 1,2,3.5 # or implicitly using tuples (covered later)

print(x,y,z) # print() can display multiple variables/values, separated by commas

1 2 3.5

To list all variables that are currently in the memory we can call the Python functions dir(), locals() and glob-
als(). However, in Jupyter notebooks the IPython command whos gives a more readable view.

whos

Variable Type Data/Info

a int 15
b int 15
c int 2
x int 1
y int 2
z float 3.5

To delete a variable we can use the function del() or the magic command %reset -f.

del(x)

%reset -f

6.2 Data types

The following cell introduces the basic ‘primitive’ data types in Python, which are listed in the following table.
The Python function type(x)will return the data type of a variable x. Also the data type is displayed with the command
whos. Notice that in the following assignments the data type is never given explicitly! Instead Python will automatically
set the data type, that fits best to the assigned value.

6.2. Data types 33

https://www.python-course.eu/python3_blocks.php%3E

Principles of Programming

i = 1317 # Integer (int) [e.g. -1, 0, 1, 2, 3]
f = 2.31 # Floating point number (float) [e.g. -1.0, -0.1, 0.0, 3.212, 1235.

↪213, 13.5e2]
c = 5 + 1j # Complex number (complex) [e.g. 3 + 2j, cmath.sqrt(-1)]
b = True # Boolean (bool) [True,False or 0, 1]
s = 'abcd' # String (str) [e.g. 'Hello World!', 'a name', "quotation marks used␣

↪for apostrophes"]
n = None # None (NoneType) [None]

print(type(i)) # example usage of type(). However the command 'whos' will show the␣
↪data type as well.

<class 'int'>

whos

Variable Type Data/Info

b bool True
c complex (5+1j)
f float 2.31
i int 1317
n NoneType None
s str abcd

6.3 Naming conventions

Names must only consist of letters and numbers. Actually letters from most alphabets like Ä,ö,Ø,И,ڳ,λ etc. are allowed,
but it’s best practice to use only the latin alphabet and numbers! The only valid special character is the underscore. In
addition, namesmust not start with a number and should not start with an underscore. Usually:

• class names are written in ‘CamelCase’
• functions and variables in ‘lower_case_with_underscores’
• constant values are written in ‘BIG_LETTERS_WITH_UNDERSCORES’.

Try to use names that aremeaningful and not longer than necessary. Some examples are given in the following cell.

GOOD NAMES
i = 1 # single letters are okay in a small context
max_value = 255 # meaningful and self explaining name
PI = 3.141 # big letters for constant values

BAD NAMES
l = 1 # l and O are similar to 1 and 0
O = 0
λ = 7 # don't use other alphabets!
ڳ = 8
print(ڳ) # even if it's valid

8

34 Chapter 6. Python basics

Principles of Programming

Note that variable namesmust not equal the Python keywords:
False, def, if, raise, None, del, import, return, True, elif, in, try, and, else, is, while, as, except, lambda, with, assert,
finally, nonlocal, yield, break, for, not, class, from, or, continue, global, pass
Additional information regarding naming and conventions available here.

6.4 Arithmetic operations

These are applied to numbers (integers, floats or complex). Usually we would assign the result a variable. If the result of
the last expression in a cell is not assigned, it will be printed directly. We use this to make the examples cleaner.

1 + 3 # addition

4

3 - 2 # subtraction

1

2 * 2 # multiplication

4

4 / 2 # division (x will be a float because dividing two Integers will always␣
↪return a float)

2.0

9 // 2 # floor division (returns the quotient of the euclidian devision)

4

9 % 2 # modulo (returns the remainder of the euclidian devision)

1

2**3 # exponentiation

8

9**0.5 # root (using the exponentiation operator)

3.0

6.4. Arithmetic operations 35

https://www.python.org/dev/peps/pep-0008/#naming-conventions

Principles of Programming

6.4.1 Execution order:

The execution order of operations depends on the precedence of the involved operations. Operations with same prece-
dence will be executed from left to right (except for the ‘power’ operator). A detailed overview of the precedences is
available here. Below two examples:

a = 1 + 2 * 3**2 # exponents before multiplication before addition
x = 1 / (2 * 2) # multiplication and division have same precedence (usually left to␣

↪right, but parentheses used here)
print(a, x)

19 0.25

6.5 Boolean operations

Boolean operations are applied to booleans. The essential operations are and (&), or (|), xor (^) and not.

b1 = True
b2 = True

and (result is true, if both conditions are true)
b3 = b1 and b2
print('b1 and b2 = ', b3)

or (result is true, if at least one condition is true)
b3 = b1 or b2
print(' b1 or b2 = ', b3)

xor (result is true, if exactly one condition is true)
b3 = b1 ^ b2
print(' b1 ^ b2 = ', b3)

not (will negate the boolean value)
b3 = not b1
print(' not b1 = ', b3)

b1 and b2 = True
b1 or b2 = True
b1 ^ b2 = False
not b1 = False

6.6 Comparisons

Comparisons are operations that compare two values and return a boolean value.
Note that in the following examples the result of the comparison is assigned to the variable b:

b = 1 <= 5 # greater, smaller, greater or equal, smaller or equal
print(b)

36 Chapter 6. Python basics

http://www.informit.com/articles/article.aspx?p=459269&seqNum=11%3E

Principles of Programming

True

b = 1 == 1.0 # equal (here true because same value after implicit cast)
print(b)

True

b = 'aa' < 'ab' # comparing strings is valid (result depends on alphabetic order)
print(b)

True

b = True > 0 # booleans can be seen as 1 (True) and 0 (False)
print(b) # -> comparison with integers is valid

True

6.6.1 Explicit conversions

The syntax for explicit conversions is

v2 = newtype(v)

where v is the variable to convert, newtype the new data type (e.g. str for string, int for integer or bool for
booleans) and v2 the variable, the result should be assigned to. Between the primitive data types, almost any conversion
is valid. The following cell shows some examples:

f = float(123) # integer to float
print('float(123) =', f)

f = float('5.1') # string to float (scientific notations like '2.3e3' or '-13.5e-5'␣
↪are also convertable)

print("float('5.1') =", f)

i = int(141.6) # float to integer (this will drop decimals e.g. 1.9 -> 1 and -2.9 ->
↪ -2)

print('int(141.6) =', i)

i = int('-2341') # string to integer
print("int('-2341') =", i)

s = str(15.3) # float or integer to string
print("str(15.3) =", s)

b = bool(-100.3) # float or integer to boolean (every number that is not zero or␣
↪minus zero will be converted to 'True')

print('bool(-100.3) =', b)

i = float(True) # boolean to float or integer ('True' will be converted to 1.0,
↪'False' to 0.0)

(continues on next page)

6.6. Comparisons 37

Principles of Programming

(continued from previous page)

print('float(True) =', i)

c = complex(1.5) # float to complex
print('complex(1.5) =', c)

c = complex('1.5+1j') # string to complex
print("complex('1.5+1j') =", c)

float(123) = 123.0
float('5.1') = 5.1
int(141.6) = 141
int('-2341') = -2341
str(15.3) = 15.3
bool(-100.3) = True
float(True) = 1.0
complex(1.5) = (1.5+0j)
complex('1.5+1j') = (1.5+1j)

Invalid conversions will raise a TypeError:

#float(1.5+1j) # this would raise a TypeError

Nested casts are also possible:

int(bool(complex(float(str(1)))))

1

6.6.2 Implicit conversions

At some points conversions happen implicitly e.g. when the program requires a specific data type but gets another one,
or when performing operations using variables of different data types:

adding float and integer will result in float (even if the result has no decimals)
f = 1 + 1.0
print("1 + 1.0 =", f)

booleans can implicitly be converted to Floats or Integers
f = 1.5 + True
print("1.5 + True =", f)
i = 5 * False
print("5 * False =", i)

vice versa can floats and integers also be converted to booleans if they are␣
↪connected by a boolean operation

b = -5 and True
print("-5 and True =", b)
b = not 0.0
print("not 0.0 =", b)

38 Chapter 6. Python basics

Principles of Programming

1 + 1.0 = 2.0
1.5 + True = 2.5
5 * False = 0
-5 and True = True
not 0.0 = True

Note that with both, explicid and impicid conversions we will not not modify a casted variable v, but instead create a
temporary value, that represents v as a specific data type:

x = 1 # x is an integer
y = float(x) # we assign y the float repr. of the value of x

print('x:', type(x)) # x is still an integer
print('y:', type(y)) # y is a float

x: <class 'int'>
y: <class 'float'>

6.6.3 Single condition

The most simple usage is the if statement, followed by a condition and a colon. The conditional statements follow in a
block. The statements inside the block are only executed, when the condition is (evaluated to) True.

condition = True
if condition:

print('condition is True!')
print('still inside block!')

print('outside block!')

condition is True!
still inside block!
outside block!

The following example has a more complex condition which will be evaluated to a boolean value. We use the else keyword
to introduce another block, that is only executed, when the condition is False.

x = 7

if x > 5 and not x%2 == 0: # statement will be evaluated to a boolean value
print('x is greater than 5 and odd!')

else:
print('x is smaller/equal to 5 or even!')

x is greater than 5 and odd!

Note that all kind of blocks can be nested. For example the condition in the example above can be separated. The result
of the conditional expressions can be stored to improve readability (but this also adds two more lines to read):

x = 7

is_greater_5 = x > 5

(continues on next page)

6.6. Comparisons 39

Principles of Programming

(continued from previous page)

is_odd = x % 2 == 1

if is_greater_5:
print('x is greater than 5', end=' ')
if is_odd:

print('and odd!')
else:

print('and even!')
else:

print('x is smaller/equal to 5!')

x is greater than 5 and odd!

6.6.4 Complex decisions

More complex structures can be built with the elif (short for else if) and else keywords. The conditions are checked,
top-down untill one condition is True. If no condition is True, the else-block is executed (if it exists). The following
cell demonstrates the usage.

cond1 = False # some boolean variables used as conditions
cond2 = True
cond3 = False

if cond1:
print('cond1 is True')

elif cond2: # will be checked if first condition is False
print('cond2 is True, cond1 is False')

elif cond3: # will be checked if 1st and 2nd condition are False
print('cond3 is True , cond1 is False, cond2 is False')

else:
print('no condition is True')

cond2 is True, cond1 is False

6.6.5 Ternary if statement

This expression can be used for single line if-else statements.

possible implementation to get the sign of a value
v = -3
s = 1 if v >=0 else -1
print(s)

-1

list1 = [1.0, 'name', 15, True]

print('Type: ', type(list1))
print('Values:', list1)

40 Chapter 6. Python basics

Principles of Programming

Type: <class 'list'>
Values: [1.0, 'name', 15, True]

6.6.6 Indexing

The elements of a list are accessed by typing the name of the variable, followed by the index in brackets. Note that the
first element has the index 0 which is usual for most programming languages but not matlab. Python supports negative
indices, where -1 will give the last element of the list, -2 the second last and so on.

0 1 2 3 4 5 <- indices
L = ['a', 'b', 'c', 'd', 'e', 'f']

first_element = L[0] # access first element of L
second_element = L[1] # access second element of L
last_element = L[-1] # access last element of L (in this case equiv. to L[5])

print('first: ', first_element)
print('second:', second_element)
print('last: ', last_element)

first: a
second: b
last: f

Trying to access any element after the last one will raise an IndexError. For example our created list has currently 6
elements, so the last element has the index 5. Trying to access the element at index 6 will fail:

print(L[6]) # this would rise an IndexError

6.6.7 Slicing

Python supports slicing, similar to matlab. Slicing means accessing a part of a list. The syntax is
List[start:end:step]

where start is the start of the slice (included), end the end of the slice (excluded) and step the step width in between.
When start is omitted, the slice will start from the first element. Omitting end will make the slice end with the last
element. Omitting step will result in a step width of 1.

0 1 2 3 4 5 <- indices
L = ['a', 'b', 'c', 'd', 'e', 'f']

print(L[1:3]) # access elements from index 1 to 3
print(L[1:5:2]) # access all elements from 1 up to 5 with step width 2

['b', 'c']
['b', 'd']

print(L[:3]) # access all elements up to index 3
print(L[3:]) # access all elements from index 3

6.6. Comparisons 41

Principles of Programming

['a', 'b', 'c']
['d', 'e', 'f']

print(L[:]) # access all elements (creates a copy of L)
print(L[::-1]) # access all elements with reversed order

['a', 'b', 'c', 'd', 'e', 'f']
['f', 'e', 'd', 'c', 'b', 'a']

6.6.8 Editing

Editing means changing values of a list without changing its shape.

list2 = [1, 1, 1, 1]
print(list2)

list2[0] = 0 # assign a new value to the first element
print(list2)

list2[2:4] = [2, 3] # slices can be edited as well
print(list2)

[1, 1, 1, 1]
[0, 1, 1, 1]
[0, 1, 2, 3]

6.6.9 Manipulation

A list can be manipulated using append, extend, del or remove.

list2 = [] # create an empty list
print(list2)

list2.append(1) # appends one element
print(list2)

list2.extend([2, 3, 4]) # appends a sequence
print(list2)

list2.insert(2, 0) # inserts 0 at index 2
print(list2)

del(list2[2]) # removes the element at index 2
print(list2)

list2.remove(1) # removes the first element that is equal to the argument..
print(list2) # .. raises an error if argument not in list

42 Chapter 6. Python basics

Principles of Programming

[]
[1]
[1, 2, 3, 4]
[1, 2, 0, 3, 4]
[1, 2, 3, 4]
[2, 3, 4]

6.6.10 More list operations

The following cells should give an overview about the usage and capabilities of lists. In general it is better to learn what
is possible first and then focus on the details (because the details can be quikly looked up).

L = [1, 2] * 4 # repeats the given list 4 times
print(L)

[1, 2, 1, 2, 1, 2, 1, 2]

L = [1, 2] + [3, 4] + [5, 6] # the + operator can be used to concatenate lists
print(L)

[1, 2, 3, 4, 5, 6]

L = [1, 2, 3]
L.reverse() # reverse the elements in the list
print(L)

[3, 2, 1]

L = [1, 2, 1, 3]
n = L.count(1) # count occurences of a value
print(n)

2

L = ['a', 'b', 'c']
b = 'a' in L # x in L returns true if x matches at least one␣

↪element in L
print(b)

True

L = [5,8,2,6,4,2.5,1]
L.sort() # sort list (only possible if values are␣

↪comparable)
print(L)

6.6. Comparisons 43

Principles of Programming

[1, 2, 2.5, 4, 5, 6, 8]

L = [5,8,2,6,4,2.5,1]
min_v = min(L) # min(L) / max(L) will return minimum / maximum␣

↪value in L
max_v = max(L)
length = len(L) # len(L) will return the number of elements in L
print('minimum =', min_v)
print('maximum =', max_v)
print(' length =', length)

minimum = 1
maximum = 8
length = 7

More information about lists available here.

T = (False, 1.0, '2', 3) # creation of a tuple
print('Type: ', type(T))
print('Values:', T)

Type: <class 'tuple'>
Values: (False, 1.0, '2', 3)

Once a tuple is initialized, it is neither valid to change its values nor to add/remove elements. E.g. trying to assign a new
value to the first element in T will raise a TypeError:

print(T[0]) # accessing elements is valid
#T[0] = 1.0 # will raise a TypeError

False

Any list functionality does not modify the entries can also be applied to tuples. E.g.
• indexing / slicing
• the functions max() / min() / len()
• the in-operator.

Note: In many cases the parentheses are not required to create a tuple, but it is best practice to use perenthesis. Never-
theless the following cell is valid.

T = False, 1.0, '2', 3 # no parenthesis used to create the tuple
print(T, type(T))
print('Values:', T)

(False, 1.0, '2', 3) <class 'tuple'>
Values: (False, 1.0, '2', 3)

More information about tuples is available here.

44 Chapter 6. Python basics

https://docs.python.org/3/tutorial/datastructures.html%3E
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Principles of Programming

D = {'a':1, 'b':2.0, 15:'x'} # a dictionary with 3 key-value pairs
print('Type: ', type(D))
print('Values:', D)

Type: <class 'dict'>
Values: {'a': 1, 'b': 2.0, 15: 'x'}

The value for a specific key in a dictionary D is accessed using the syntax D[k], where k is the key. An error will be
raised if the key is not in the dictionary.

D = {'a':1,'b':2}
v = D['b'] # access the value that corresponds to the key 'b'
print(v)

2

Modifying values of existing keys and adding new key-value pairs works in the same way:

D = {'a':1,'b':2}
D['c'] = 3 # add a new key 'c' with the value 3
print(D)
D['c'] = 5 # change the value of key 'c' to 5
print(D)

{'a': 1, 'b': 2, 'c': 3}
{'a': 1, 'b': 2, 'c': 5}

The items() method of dictionaries can be used to iterate over each key value pair. Alternatively it can be used to
convert a dictionary to a list of tuples.

for d in D.items():
print(d)

('a', 1)
('b', 2)
('c', 5)

D_as_list = list(D.items())
print(D_as_list)

[('a', 1), ('b', 2), ('c', 5)]

More information about dictionaries available here.
A set contains unique elements in an unordered fashion (varying data types allowed). Unique means, that every element
will not occur more than one time in the set. Adding a element to a set, that already contains such a element will not
modify the set. Unordered means, that the elements in a set don’t have indices and though indexing or slicing is not
possible. Sets are created similar to dictionarys but without colons:

6.6. Comparisons 45

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Principles of Programming

S = {1,2,3,1} # the element 1 will only be once in S, because sets do not allow␣
↪dublicate entries

print('Type: ',type(S))
print('Values:',S)

Type: <class 'set'>
Values: {1, 2, 3}

Albeit sets don’t support indexing, they allow some useful operations like computing the intersection, the union or the
disjoints:

S1 = {'a', 'b', 'd', 1, 2, 4}
S2 = set((1, 3, 4, 'a', 'c')) # alternative constructor (same as casting a tuple to␣

↪a set)

print('Elements in S1: ', S1)
print('Elements in S2: ', S2)

S_intersect = S1 & S2 # = S1.intersection(S2)
print('Elements in S1 and S2: ', S_intersect)

S_union = S1 | S2 # = S1.union(S2)
print('Elements in S1 or S2: ', S_union)

S_xor = S1 ^ S2 # = S1.difference(S2).union(S2.difference(S1)))
print('El. in S1 or S2, not in both: ', S_xor)

Elements in S1: {1, 2, 4, 'a', 'd', 'b'}
Elements in S2: {1, 3, 4, 'c', 'a'}
Elements in S1 and S2: {1, 4, 'a'}
Elements in S1 or S2: {1, 2, 3, 4, 'c', 'd', 'b', 'a'}
El. in S1 or S2, not in both: {2, 3, 'c', 'd', 'b'}

More information about sets is available here.

6.7 While loop

The most simple loop is the while loop. The syntax is:

while cond:
inside loop
still inside loop

outside the loop

Where cond is a condition. The loop will repeat until the condition is evaluated to False. The following example runs
a while-loop until there are no more elements in the list L. In each iteration the first element of L is removed.

L = ['a', 'b', 'c'] # create a list with 3 elements

while len(L) > 0: # iterate as long as L is not empty (number of elements greater␣
↪than zero)

print(L) # print whole list

(continues on next page)

46 Chapter 6. Python basics

https://docs.python.org/3/tutorial/datastructures.html#sets

Principles of Programming

(continued from previous page)

del(L[0]) # delete the first element in L

print('done')

['a', 'b', 'c']
['b', 'c']
['c']
done

6.8 For loop

Python offers a very simple for-in syntax to iterate over each element in a collections like a list, a tuple or a set:

for a in B:
inside loop
still inside loop

outside the loop

Here B is a collection of elements (like a list, set, tuple etc.) and a the variable that will take the values of the elements
in B. The indented lines after the colon are executed in every loop. In the next cell we will use a for loop to iterate over
the elements in a list and print each element:

L = ['e1', 2, 3.5] # creating a list
for elem in L:

print(elem) # elem will take the value of each element in L

e1
2
3.5

For loops can also be used to execute a block n times, having a variable that holds the number of the iteration. To create
such a loop, we can use Pythons range() method, which will create something similar to a list:

n = 3
for i in range(n): # range(3) creates the sequence [0, 1, 2]

print('inside the loop..')
print('i =', i)

print('done')

inside the loop..

i = 0
inside the loop..
i = 1
inside the loop..
i = 2
done

6.8. For loop 47

Principles of Programming

If range(x) is called with only one argument, the loop will start at 0 and incrementing up to x (not included) with a
stepwith of 1. More general, one can call range() with up to three arguments, which denote the start, stop and step
with of the sequence. Two arguments denote start and stop (step width will be 1).

start = 1; stop = 6; step = 2

for j in range(start, stop, step):
print(j)

1
3
5

6.8.1 List comprehension

The following example demonstrates a powerful feature in Python which uses the for-in syntax called list comprehension.
More information available here.

lst_sq = [x**2 for x in range(1, 11)] # 'for' inside brackets used to create a list
print(lst_sq)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

6.8.2 Enumeration

The enumerate() function is very helpful when iterating over sequences and keeping track of the index

L = ['a','b','c']
for index, elem in enumerate(L):

print('Element {}: {}'.format(index, elem))

Element 0: a
Element 1: b
Element 2: c

6.8.3 Looping over two lists

When it is necessary to iterate over two lists simultaneously one can use the built-in zip() function. It takes multiple lists
as arguments and creates a list-like object of touples, holding the corresponding elements of all lists. This is demonstrated
in the next cell:

L1 = ['a', 'b', 'c']
L2 = [1, 2, 3]
L3 = ['I', 'II', 'III']

for x,y,z in zip(L1, L2, L3):
print(x, y, z)

48 Chapter 6. Python basics

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

Principles of Programming

a 1 I
b 2 II
c 3 III

6.9 Break and continue

When using loops, there are two essential keywords: break and continue.
• break (immediately step out of the loop)
• continue (immediately start the next iteration)

The following cells will demonstrate the usage of these keywords.

L = [] # create an empty List

for i in range(10): # i will have the values [0,1,...,9]
if i % 2 == 0: # if i is even..

continue # ..jump to the next iteration
L.append(i) # append the current value of i to L

print(L)

[1, 3, 5, 7, 9]

example for getting the index of a specific value
L = ['a','b','c','d']
t = 'd'
i = 0
while True: # no condition (would run till infinity)

if L[i] == t: # check if we found the value
break # leave the loop

i += 1 # increment search index pos

print(i)

3

Of course the example above is not a good way to get the index of an element, because it would result in an error, if t is
not in L. Besides that, Python has already a solution for this task:

i = L.index(t) # to be fair, this also raises an error if t is not in L
print(i)

3

#---------------DEFINITION OF say()--------------

(continues on next page)

6.9. Break and continue 49

Principles of Programming

(continued from previous page)

def say(text): # definition of a function with one parameter
print(text) # calling print()

#------------------USAGE OF say()----------------

say('hello') # calling say()
say('world') # calling say() again with a different argument

hello
world

In general, functions are used to take some arguments, do some computation with them and then return a value. Python
functions will always return exactly one value. The following function takes two arguments and returns the absolute
distance of them. We declare, which value should be returned with the keyword return followed by the variable name.

#---------------DEFINITION--------------

def distance(x, y): # definition of a function with two parameters
dist = abs(x-y) # abs() is a python built-in function that returns the␣

↪absolute value
return dist # return the value of 'dist'

#------------------USAGE----------------

a = -1.5
b = 12.7
c = distance(a,b) # calling distance() with arguments a and b. The result is␣

↪assigned to c
print(c)

14.2

You may wonder what the function say() returned, because we did not use return at all. By default any function will
return the special value None. The following implementations are equivalent to the previous say() function. All of them
return None.

def say1(text): # first implementation, no return statement
print(text)

def say2(text): # 2nd implementation, return without value
print(text)
return

def say3(text): # 3rd implementation, explicitly returning None
print(text)
return None

r1, r2, r3 = say1('1'), say('2'), say('3') # storing the return values of all␣
↪functions

print(r1,r2,r3)

1

50 Chapter 6. Python basics

Principles of Programming

2
3
None None None

6.9.1 Multiple return types

Functions can return multiple elements by implicitly using tuples (here one usually doesn’t use the parentheses to declare
tuples).

def divide_euclidian(dividend,divisor):
quotient = dividend // divisor
remainder = dividend % divisor
return quotient, remainder # same as: return (quotient, remainder)

q, r = divide_euclidian(15, 7) # same as: (q, r) = divide_euclidian(15,7)
print('15 / 7 = {} R: {}'.format(q, r))

15 / 7 = 2 R: 1

Info: Python already offers this function:

q, r = divmod(15,7)
print('15 / 7 = {} R: {}'.format(q, r))

15 / 7 = 2 R: 1

6.9.2 Keyword parameters

Functions can have optional keyword parameters. These keyword parameters are always the last (rightmost) parameters
of all. They are declared by a following equal sign and the default value. The following function has one obligatory and
one optional parameters. In this example the optional parameter is used as a so called ‘flag’ (like an on-off switch). In
general keyword arguments can have any type.

def square(a, verbose=False): # optional keyword parameter (here a bool)
if verbose:

print('square({}) was called!'.format(a))
return a**2

sq1 = square(1) # nothing will be printed
sq2 = square(2, verbose=True) # will print the message

square(2) was called!

Python provides many built-in functions. Some essential functions are used in the next cell. A complete list is available
at programiz.com. Note that different Python versions may provide more/less built-in functions.

6.9. Break and continue 51

https://www.programiz.com/python-programming/methods

Principles of Programming

print('max(1, 9, -5) =', max(1, 9, -5)) # max(a, b, ..) returns the biggest value
print('min(-3, 3, 0) =', min(-3, 3, 0)) # min(a, b, ..) returns the smallest value
print('abs(-2) =', abs(-2)) # abs(x) returns the absolute value

max(1, 9, -5) =

9
min(-3, 3, 0) = -3
abs(-2) = 2

Note that there are built-in functions like del() which are Python keywords and others like max(), which are no key-
words. Unlike keyword built-ins, the non-keyword built-ins can be overwritten! This is demonstrated in the following
cell:

Example, that built-ins can be overwritten!

print('max: ', max)
print('type of max:', type(max))
print('max(1,2): ', max(1,2))
#del(max) # ERROR (name 'max' is not defined)

print('\noverwriting max!\n')
max = 12345

print('max: ', max)
print('type of max:', type(max))
#print('max(1,2): ', max(1,2)) # ERROR ('int' object is not callable)
del(max)

max: <built-in function max>
type of max: <class 'builtin_function_or_method'>
max(1,2): 2

overwriting max!

max: 12345
type of max: <class 'int'>

6.10 Importing modules

We can additionally import modules like the math module to have access to the functionalities of that module. We can
use the dir() function to list the available functionalities.

import math # import the math module to use its features
#dir(math) # list functionalities of a module

At this point we will introduce another helpful IPython feature. We can append a question mark to any module, variable,
function or class, to show additional information and the documentation about it (alternatively click on a function press
[SHIFT]+[TAB]):

52 Chapter 6. Python basics

Principles of Programming

math.log10?

math.pi?

To access / use a functionality we use the dot-operator (a dot between the module name and the function / variable).

x = math.log10(10000) # logarithm with base 10
print(x)

p = math.pi # the constant pi
print(p)

y = math.cos(2*math.pi)
print(y)

4.0

3.141592653589793
1.0

6.10.1 Class definition

The following cell defines the class dog. The class contains multiple methods (methods are functions of a class).

class dog: # the definition of a class starts with the class␣
↪keyword and the name of the class

def __init__(self, name): # the init method defines the creation of an␣
↪instance of this class

self.name = name
self.age = 0 # our dogs will have two attributes: name and age.

↪'self' refers to the new dog-object

def celebrate_birthday(self): # this method will increase the age of the␣
↪corresponding object by one

self.age += 1

def rename(self, new_name): # this method takes a new name as argument and␣
↪assignes it to the dogs name

self.name = new_name

def __str__(self): # definition how to cast a dog to a printable string
return '{}, {} years old'.format(self.name, self.age)

6.10. Importing modules 53

Principles of Programming

6.10.2 Class usage

Now we will create two instances of that class and use some of their methods.

dog1 = dog('Bonny') # initialization of a dog. Note that only one␣
↪argument is given (the name)

dog2 = dog('Clyde') # 'self' is always passed implicitly

dog1.rename('Bonnie') # call of dog1s rename method with dot operator

for i in range(5):
dog1.celebrate_birthday()
dog2.celebrate_birthday() # call celebrate_birthday() 5 times for both dogs

print(dog1)
print(dog2) # print will implicitly use our implemented string␣

↪conversion

print(dog1.age) # access attribute of dog1 with dot operator

Bonnie, 5 years old
Clyde, 5 years old
5

Additional information about classes is available e.g. at the official python documentation.
The division example could be implemented like this:

def divide(dividend, divisor):
assert divisor != 0, "Division by zero not valid!"
return dividend/divisor

Let us now try to call that function with an invalid divisor:

result = divide(1, 0)

AssertionError Traceback (most recent call last)
Cell In[87], line 1
----> 1 result = divide(1, 0)

Cell In[86], line 2, in divide(dividend, divisor)
1 def divide(dividend, divisor):

----> 2 assert divisor != 0, "Division by zero not valid!"
3 return dividend/divisor

AssertionError: Division by zero not valid!

This will raise an AssertionError with our message, so we directly know what we did wrong. Maybe this is not the best
example, because without the assertion the call would raise a ZeroDivisionError, which is also pretty obvious, but the
general idea should be clear.

54 Chapter 6. Python basics

https://docs.python.org/3/tutorial/classes.html

Principles of Programming

6.10.3 SyntaxError

y = # incomplete statement

x = (1+2) * ((3+5)/3)) # additional parentheses

x = (1+2) * ((3+5)/3 # missing parentheses

6.10.4 IndentationError

if True:
x = 1 # missing indentation

a = 1
b = 2 # invalid indentation

6.10.5 TypeError

abs() # calling abs() with no arguments (one argument required)

a,b = abs(1) # trying to assign the result of abs() to a tuple (only one␣
↪return value)

a = 1
a[0] # trying to access first element of integer (non sequence␣

↪object)

a = 1
a() # parentheses indicate that a() is a method, but it is not

6.10.6 ValueError

int('1.5') # string cannot be converted to int

try:
int('1.0') # the try block contains statements that may raise an␣

↪error
a = 1/0

except ValueError:
print('conv. failed') # if the declared error occurs, the statements in the␣

↪except block are executed
except ZeroDivisionError:

print('division by 0') # multiple different errors can be excepted

(continues on next page)

6.10. Importing modules 55

Principles of Programming

(continued from previous page)

finally:
print("don't care!") # the finally block (optional) contains statements, that␣

↪are ALWAYS executed after the try-except

• that are only used in a small context (e.g. only in one statement)
• whose return value can be computed in one statement.

The following cell shows the usage of lambda expression to define a function:

def add(x, y): # common way to define a function
return x + y

addL = lambda x,y : x+y # using lambda to define a function

print('Type of add: ', type(add))
print('Type of addL:', type(addL))

print('\nResult of add(1,2): ', add(1,2))
print('Result of addL(1,2):', addL(1,2))

Usually lambda functions are not stored in variables, but instead directly passed as arguments. E.g. the built-in function
max() has the keyword parameter key of type function. We can e.g. use this keyword, to make the function search for
the biggest absolute value:

values = [-3, 8, -15, 2]

abs_max = max(values, key = lambda x: abs(x))
print('{} has the highest absolute value in {}.'.format(abs_max, values))

• In an interactive shell, the last result will be stored to _
• Tripple apostrophs introduce multi line comments, tripple quotes introduce multi-line strings:

'''
a
multi-line
comment
'''
s = """a
multi-line
string"""

print(s)

• Strings are similar to tuples of single characters so indexing and slicing can be applied to strings

s = ('xyz'*5)
print(s)
print(s[:5])
print(s[-1])

• Conversion between different integer systems

x = 0xFF # hexadecimal
print(hex(x),'=',x)

56 Chapter 6. Python basics

Principles of Programming

b = 0b1000 # binary
print(bin(b),'=',b)

o = 0o11 # octal
print(oct(o),'=',o)

• Since Python 3 integers can have arbitrary size

f = 2.0**1023 # limit of float value
print(f)

i = 3**5000 # int has no limit
print(i)
print(bin(i)) # simple way to produce many zeros and ones

• Creation of a char from its unicode number (see unicode table) with \u in strings

lmbda = '\u03BB'
print(lmbda)

• Creation of a char from its ascii number (see ascii table) with chr()

heart = chr(60) + chr(51)
print(heart)

• Tricky list augmentation. Although the following four implementations have the same result, the first one is about
1000 times slower than the others (because new memory space is allocated in each iteration)!

L = [1,2]

L = L + [42] # impl 1 VERY SLOW !!
L += [42] # impl 2
L.append(42) # impl 3
L.extend([42]) # impl 4

print(L)

• Python supports an else block after loops (and try-catch blocks). That is only reached, when the while condition
is not fulfilled (and not reached when the loop is terminated with the break statement)

i = ''
while i != 'exit':

i = input('enter exit or break: ')
if i == 'break':

break
else:

print('else block')
print('done')

Following code-cell removes In[] / Out[] prompts left to code cells.

%%HTML
<style>div.prompt {display:none}</style>

6.10. Importing modules 57

http://www.unicode-table.com

Principles of Programming

58 Chapter 6. Python basics

Part III

Geospatial Images

59

CHAPTER

SEVEN

GEOSPATIAL RASTER IMAGES - THE GDAL LIBRARY

An image in a computer is typically either a vector-based drawing (e.g., consisting of geometric features like points,
polygons, polytopes, meshes, triangles) or a raster-based space representation.
Simply speaking, a raster is an image representation in which the image domain is cut into small equal-sized rectangular
areas called the pixels and attributes are assigned to these pixels based on either representing some average (e.g., color is
typically some average over the area of the pixel) or center point information. In a computational representation, raster
images are therefore 2Dmatrices. The shape is based on the number of pixels in the subdivision and the total area covered
by the image.
We have already seen RGB images as (N,M,3)-dimensional tensors, where the last tensor axis is for holding red, green,
and blue. In spatial images, we will have the same tensor shape, but the three channels can be replaced with multiple or
even many measurement channels.
Furthermore, the spatial nature of geospatial images ismanaged through additional attributes that fixes the relation between
pixel coordinates (e.g., integer indices for M and N) and world coordinates in a given CRS. Hence, for a spatial image,
we are given

• a projection (CRS)
• a basepoint and two axes in terms of the CRS (that will correspond to the X and Y axis of the tensors)
• a set of C tensors called image channels

More concretely, the basepoint and two axes are commonly given by
• giving the CRS coordinates of the pixel location (0,0) and
• giving increments in terms of the CRS in both axes for going one step to the right in the image

This data structure is called geotransform and embedded in many spatial image file formats.
Experienced spatial data scientists will immediately realize that the orthogonality of the pixel coordinate with the possible
non-orthogonality of the given CRS will lead to a linear increase in error along the axes such that coordinate reference
systems (CRS) are better to be chosen to be locally orthogonal like the UTM family of projections.
Enough theory, let us start exploring such imagery with Python:
We provide

• A Dockerfile to install GDAL in a data science environment to run Docker containers
• Spatial Images

– an easy RGB cloudfree composite of Germany (10 GB) Download
– an 11-bands wildfire image in the U.S. (830 MB) Download

61

https://api.bgd.ed.tum.de/germany.tiff
https://api.bgd.ed.tum.de/martin_s2a_focus.tif

Principles of Programming

62 Chapter 7. Geospatial Raster Images - The GDAL Library

CHAPTER

EIGHT

LEARNING STEPS:

Try to follow up with the following task we demonstrate in the lecture:
• Explore data by installing QGIS and looking closely at the data.
• Load images, find coordinates, plot small fractions.
• Implement contrast adjustments to create well-readable images
• Implement domain-specific RGB composites (false-color images), therefore, read Simple Sentinel 2 Composites
• Find the fire (look at where the fire band is non-zero) and plot the surroundings
• Create random patches (fire or no fire) for deep learning, each patch should be 64 by 64 and written as a PNG
• Download Sentinel Products (e.g., L1A products); run sen2cor, understand the Scene Classification SCL
• Build a cloudfree composite of summer images in Europe
• Learn how to download from AWS usnig aws-cli (other tools are too slow in my experience)

63

https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/composites/

Principles of Programming

64 Chapter 8. Learning Steps:

CHAPTER

NINE

REFERENCE INFORMATION BEYOND THE SCOPE OF THIS
LECTURE

9.1 Installation

The installation for Windows and Mac users should be not too difficult with Anaconda (conda). For Linux, install both
gdal (system) and the python3 gdal package using pip similar to below Dockerfile

9.2 Docker File

FROM jupyter/datascience-notebook
USER root

RUN apt-get update && apt-get -y --no-install-recommends install python3-dev software-
↪properties-common

RUN add-apt-repository ppa:ubuntugis/ubuntugis-unstable

RUN apt-get update && apt-get -y install gdal-bin libgdal-dev

RUN pip3 install gdal

9.3 Container Run

The container has been built, pushed to Dockerhub and run as

docker run -p 8888:8888 mwernerds/spatialjupyter

You can install Docker to your system and just run this container if you have a Linux-enabled environment (including
Windows 11 Professional / Education, but typically not Windows Home).
For Windows Home, you can install a Virtual Machine. I propose

• VirtualBox for Virtualization (runs on Mac, Windows, and Linux)
• Ubuntu (beginners), Debian (more advanced)

65

Principles of Programming

66 Chapter 9. Reference Information beyond the scope of this lecture

CHAPTER

TEN

GDAL PRIMER

A dataset in GDAL is a placeholder for the file itself. It does, however, only read the metadata and is rather lightweight.
You can explore the projection and the content and very low cost.

from osgeo import gdal;
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['figure.dpi'] = 600 #higher resolution of plots

10.1 The Dataset Object

dataset = gdal.Open("data/germany.tiff", gdal.GA_ReadOnly)
if not dataset:

print("Dataset not found.")
else:

print("Driver: {}/{}".format(dataset.GetDriver().ShortName,
dataset.GetDriver().LongName))

print("Size is {} x {} x {}".format(dataset.RasterXSize,
dataset.RasterYSize,
dataset.RasterCount))

print("Projection is {}".format(dataset.GetProjection()))
geotransform = dataset.GetGeoTransform()
if geotransform:

print("Origin = ({}, {})".format(geotransform[0], geotransform[3]))
print("Pixel Size = ({}, {})".format(geotransform[1], geotransform[5]))

Driver: GTiff/GeoTIFF
Size is 67235 x 94080 x 3
Projection is PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984",

↪SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
↪"6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.
↪0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION[
↪"Mercator_1SP"],PARAMETER["central_meridian",0],PARAMETER["scale_factor",1],
↪PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY[
↪"EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],EXTENSION["PROJ4",
↪"+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m␣
↪+nadgrids=@null +wktext +no_defs"],AUTHORITY["EPSG","3857"]]

Origin = (641594.9109931737, 7370990.488857678)
Pixel Size = (15.545613327413848, -15.545613327413848)

67

Principles of Programming

68 Chapter 10. GDAL Primer

CHAPTER

ELEVEN

RASTER BANDS

This file-level information fixes projection, georeference, and pixel meaning, and shape. But where is the data? It is
accessible from Band objects, which again do not read data, but bandwise metadata only. Let us assume we have at least
one band

if dataset.RasterCount < 1:
print("This file has no bands. This is possible, but then we cant access a band")

else:
for i in range(dataset.RasterCount):

band = dataset.GetRasterBand(i+1) # unfortunately, raster bands start with␣
↪index 1

print("Band Type={}".format(gdal.GetDataTypeName(band.DataType)))

min = band.GetMinimum()
max = band.GetMaximum()
if not min or not max:

print ("Warning: I have to cmopute min and max as they are not given.␣
↪This can take time")

(min,max) = band.ComputeRasterMinMax(True)
print("Min={:.3f}, Max={:.3f}".format(min,max))

if band.GetOverviewCount() > 0:
print("Band has {} overviews".format(band.GetOverviewCount()))

if band.GetRasterColorTable():
print("Band has a color table with {} entries".format(band.

↪GetRasterColorTable().GetCount()))

Band Type=Byte
Warning: I have to cmopute min and max as they are not given. This can take time
Min=0.000, Max=255.000
Band Type=Byte
Warning: I have to cmopute min and max as they are not given. This can take time
Min=0.000, Max=255.000
Band Type=Byte
Warning: I have to cmopute min and max as they are not given. This can take time
Min=0.000, Max=255.000

What we can see here is that this file is already quantized and arranged for screen display and/or deep learning with RGB
image pretrained models as three bands for red, green, and blue are given and data has been scaled to the range 0..255.
This is not common, but for germany.tiff helps us not to learn too much in one step

69

Principles of Programming

70 Chapter 11. Raster Bands

CHAPTER

TWELVE

READING FROM THE RASTER

There are now three ways of reading from the raster depending on the context.
• One is to read the whole raster (ReadAsArray), but this won’t work for germany as it is a bit large.
• Another one is to read certain pixels (TIFF files are organized such that you can read only parts of it)
• The third one is to rely on the Linux kernel to memory-map the whole file and access it as a numpy array.

We will now use the second one.But as a preparation, we will first localizeMunich Airport. We know the GPS coordinates
are 11.7854,48.3536. We compute the EPSG 3857 (webmercator) coordinates to be.
1311798,6165451
What do we have to do? We need to use the geotransform to find the integer raster coordinates of this.
A geotransform consists in a set of 6 coefficients (see https://gdal.org/tutorials/geotransforms_tut.html):

• GT(0) x-coordinate of the upper-left corner of the upper-left pixel.
• GT(1) w-e pixel resolution / pixel width.
• GT(2) row rotation (typically zero).
• GT(3) y-coordinate of the upper-left corner of the upper-left pixel.
• GT(4) column rotation (typically zero).
• GT(5) n-s pixel resolution / pixel height (negative value for a north-up image).

Hence taking into account that GT(2) == 0 and GT(4) == 0, we have equations for 𝑥𝑝 (and 𝑦𝑝) being the point in the
projection and 𝑥𝑟 being the point in the raster (integer coordinates)

𝑥𝑝 = 𝐺𝑇 (0) + 𝑥𝑟 ⋅ 𝐺𝑇 (1)

We have to solve for x_r to find the raster coordinates, which is easy:

𝑥𝑟 = 𝑥𝑝 − 𝐺𝑇 (0)
𝐺𝑇 (1)

Let us put this into a python function:

def world2raster (point, geotransform):
x,y = point # increases readability
u,v will be raster x,y
u = (x-geotransform[0]) / geotransform[1]
v = (y-geotransform[3]) / geotransform[5]
return int(u),int(v)

def raster2world (point, geotransform):

(continues on next page)

71

https://gdal.org/tutorials/geotransforms_tut.html

Principles of Programming

(continued from previous page)

u,v = point # increases readability
u,v will be raster x,y
x = geotransform[0] + u * geotransform[1]
y = geotransform[3] + v * geotransform[5]
return x,y

let us do a quick test
munichairport = (1311798,6165451)
munichairport_raster = world2raster(munichairport,geotransform)
print("Raster Coordinates:", munichairport_raster)
let us do a more advanced test by going down to percentages which we can "test" in␣

↪QGIS
print("From the topleft, it is in percentages around %.1f %.1f" % (munichairport_

↪raster[0] / dataset.RasterXSize * 100,munichairport_raster[1] / dataset.RasterYSize␣
↪* 100))

Raster Coordinates: (43112, 77548)
From the topleft, it is in percentages around 64.1 82.4

This makes some sense as Munich is located more in the South of Germany (82%) and east of the middle, but not far
east. Let us see later whether it is correct.
Let us now read an area of 10km by 10km. We first need to compute the number of pixels for about 1km from the
geotransform.

xcount, ycount = int(50000 / geotransform[1]), int(50000/geotransform[5])
print (xcount)
print (ycount)
This shows that Y might be flipped when reading data such that increasing the␣

↪vertical coordiate in the raster
decreases the vertical coordiante in the world

print("The box:")

3216
-3216
The box:

import struct
w,h = abs(xcount), abs(ycount)

red = dataset.GetRasterBand(1)
green = dataset.GetRasterBand(2)
blue = dataset.GetRasterBand(3)

def read_unpack(theband, x0,y0,w,h):
imagedata = theband.ReadRaster(xoff=x0,

yoff=y0,
xsize=w, ysize=h,
buf_xsize=w, buf_ysize=h,
buf_type=gdal.GDT_Float32)

image = np.array(struct.unpack('f' * w*h, imagedata)).reshape(h,w).astype(np.
↪ubyte) (continues on next page)

72 Chapter 12. Reading from the Raster

Principles of Programming

(continued from previous page)

return image

redi = read_unpack(red, munichairport_raster[0]-(w // 2), munichairport_raster[1]-(h /
↪/ 2),w,h)

greeni = read_unpack(green, munichairport_raster[0]-(w // 2), munichairport_raster[1]-
↪(h // 2),w,h)

bluei = read_unpack(blue, munichairport_raster[0]-(w // 2), munichairport_raster[1]-
↪(h // 2),w,h)

imagedata is now some data that is not yet ready for python, we need to parse it
#

if False:

plt.imshow(redi)
plt.show()
plt.imshow(greeni)
plt.show()
plt.imshow(bluei)
plt.show()

73

Principles of Programming

74 Chapter 12. Reading from the Raster

CHAPTER

THIRTEEN

TRUE COLOR SNIPPET

The following figure shows Munich Airport in the center

Now we need to make an RGB out of it
rgb = np.stack([redi,greeni,bluei], axis=-1)
plt.imshow(rgb)

<matplotlib.image.AxesImage at 0x7fd9b8271310>

75

Principles of Programming

76 Chapter 13. True Color Snippet

CHAPTER

FOURTEEN

CONCLUSION

This tutorial has shown how to use a 10 GB file to selectively find some satellite image information given a location
on Earth. It goes through the coordinate transformations necessary, the conversions between raster and world, the ac-
quisition of data as indivudal bands including the python parsing using the struct package, and the visualization using
MATPLOTLIB.
Maybe, we should store the image as a final step. There are two ways: we can save the plot (the last active figure) or we
just store the image information using the imageio package. Lets do both

plt.savefig("plot.png")
import imageio
imageio.imwrite("image.png", rgb)

The following files are then available:
• plot.png

• image.png

77

Principles of Programming

78 Chapter 14. Conclusion

Part IV

Libraries and Stories

79

CHAPTER

FIFTEEN

READING AND WRITING PLY FILES (POINT CLOUD EXAMPLE)

It has been complicated and annoying to support a sensible subset of 3D file formats. But modern C++ comes to the
rescue, see how easy the
happily reading PLY files (happly)
header-only library makes reading and working (in this case using Eigen3) with point clouds.

Source

#include "happly.h"
#include<algorithm>

#include<Eigen/Core>
#include<Eigen/Dense>
using namespace Eigen;

auto get_scaled_pointcloud(std::string filename)
{

happly::PLYData plyIn(filename);
std::vector<double> x = plyIn.getElement("vertex").getProperty<double>("x");
std::vector<double> y = plyIn.getElement("vertex").getProperty<double>("y");
std::vector<double> z = plyIn.getElement("vertex").getProperty<double>("z");
double scaler=1.0;
Eigen::MatrixXf m(x.size(),3);

for (size_t i=0; i < x.size(); i++)
{

m(i,0) = x[i] / scaler;
m(i,1) = y[i] / scaler;
m(i,2) = z[i] / scaler;

}

return m;
}

int main(int argc, char **argv)
{

auto pointcloud = get_scaled_pointcloud(argv[1]);
Matrix3f rot;
rot = AngleAxisf(0.25*M_PI, Vector3f::UnitX())

(continues on next page)

81

Principles of Programming

(continued from previous page)

* AngleAxisf(0.5*M_PI, Vector3f::UnitY())
* AngleAxisf(0.33*M_PI, Vector3f::UnitZ());

std::cout << rot << std::endl;

auto rotated = (rot * pointcloud.transpose()).transpose();

for (size_t i=0; i< 10; i++){
std::cout << "X:"<<(rot * pointcloud.row(i).transpose()).transpose() <<␣

↪std::endl;
std::cout << "Y:" << rotated.row(i) << std::endl;

}

std::vector<double> x,y,z;
x.resize(rotated.rows());
y.resize(rotated.rows());
z.resize(rotated.rows());
std::cout << "Warper" << std::endl;
for (size_t i=0; i < rotated.rows(); i++)
{

x[i] = rotated(i,0);
y[i] = rotated(i,1);
z[i] = rotated(i,2);

}
happly::PLYData plyOut;

plyOut.addElement("vertex", x.size());

plyOut.getElement("vertex").addProperty<double>("x", x);
plyOut.getElement("vertex").addProperty<double>("y", y);
plyOut.getElement("vertex").addProperty<double>("z", z);

plyOut.write("out.ply", happly::DataFormat::ASCII); // or Binary

return 0;
}

Makefile

all:
g++ -Wall -march=native -Ofast -o libs_pcl_happly libs_pcl_happly.cpp `pkg-

↪config --cflags --libs eigen3`
run:

./libs_pcl_happly ../data/sofa_0007.off.ply

82 Chapter 15. Reading and Writing PLY files (point cloud example)

Principles of Programming

Build Output

Run Output

83

Principles of Programming

84 Chapter 15. Reading and Writing PLY files (point cloud example)

CHAPTER

SIXTEEN

HAPPLY AND BOOST GEOMETRY - LOAD POINT CLOUDS IN C++11

The happly library is a nice header-only library for reading and writing PLY files. The Boost Geometry library is an
efficient OGC Simple Features comaptible spatial computing framework.
They can be bound together nicely as illustrated in the following snippet:

Source

/** \file Implementations related to Distance matrix

*/

#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <boost/geometry/algorithms/distance.hpp>

#include<numeric>
#include <random>

#include<fstream>

#include "happly.h"
#include "tictoc.hpp"

namespace bg = boost::geometry;
namespace bgi = boost::geometry::index;

using point=bg::model::point<double, 3, bg::cs::cartesian>;
using pointcloud = bg::model::multi_point<point>;

/**
* @brief Loads a PLY file and scales (aspect-correct into the unit cube).
*
* @param filename is the name of the file, at the moment PLY is supported
* @return the pointcloud
*/

(continues on next page)

85

Principles of Programming

(continued from previous page)

pointcloud get_scaled_pointcloud(std::string filename)
{

happly::PLYData plyIn(filename);
std::vector<double> x = plyIn.getElement("vertex").getProperty<double>("x");
std::vector<double> y = plyIn.getElement("vertex").getProperty<double>("y");
std::vector<double> z = plyIn.getElement("vertex").getProperty<double>("z");
// translate to origin
const auto minx = *std::min_element(x.begin(), x.end());
for (auto &ix : x)

ix -= minx;
const auto miny = *std::min_element(y.begin(), y.end());
for (auto &iy : y)

iy -= miny;
const auto minz = *std::min_element(z.begin(), z.end());
for (auto &iz : z)

iz -= minz;
// scale to unit cube
auto scaler = std::max ({

*std::max_element(x.begin(),x.end()),
*std::max_element(y.begin(),y.end()),
*std::max_element(z.begin(),z.end()),
});

pointcloud m;
m.resize(x.size());

for (size_t i=0; i < x.size(); i++)
{

m[i] = point{x[i] / scaler,y[i] / scaler,z[i] / scaler};
}

return m;
}

/**
* @brief Instantiates an affine matrix for rotation around the X axis.
*
* @param angle in radians
* @return matrix_transformer (the matrix is accessible from .matrix())
*/

bg::strategy::transform::matrix_transformer<double,3,3> xrot(double angle)
{

return bg::strategy::transform::matrix_transformer<double, 3, 3> (
1,0,0,0,
0,cos(angle), sin(angle), 0,
0,-sin(angle), cos(angle), 0,
0,0,0,1);

}

/**
* @brief Instantiates an affine matrix for rotation around the Y axis.
*
* @param angle in radians
* @return matrix_transformer (the matrix is accessible from .matrix())
*/

(continues on next page)

86 Chapter 16. happly and boost geometry - Load Point Clouds in C++11

Principles of Programming

(continued from previous page)

bg::strategy::transform::matrix_transformer<double,3,3> yrot(double angle)
{

return bg::strategy::transform::matrix_transformer<double, 3, 3> (
cos(angle), 0.0, -sin(angle), 0.0,
0,1,0,0,
sin(angle), 0,cos(angle), 0.0,
0,0,0,1);

}

/**
* @brief Instantiates an affine matrix for rotation around the Z axis.
*
* @param angle in radians
* @return matrix_transformer (the matrix is accessible from .matrix())
*/

bg::strategy::transform::matrix_transformer<double,3,3> zrot(double angle)
{

return bg::strategy::transform::matrix_transformer<double, 3, 3> (
cos(angle), -sin(angle), 0.0, 0.0,
sin(angle), cos(angle), 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0,0,0,1);

}

// let us apply a rotation
namespace trans = bg::strategy::transform;

/**
* @brief Returns a rotated copy of the given point cloud given three angles for␣

↪X, Y, Z
*
* @param in is the point cloud to be copied from
* @param xAngle is the angle around the X-axis in radians
* @param yAngle is the angle around the Y-axis in radians
* @param xAngle is the angle around the Z-axis in radians
* @return the rotated point cloud
*/

pointcloud rotated(const pointcloud &in, double xAngle,
double yAngle,double zAngle)
{

bg::strategy::transform::matrix_transformer<double,3,3>
tr (

xrot(xAngle).matrix() *
yrot(yAngle).matrix() *
zrot(zAngle).matrix()
);

pointcloud dst;
boost::geometry::transform(in, dst, tr);
return dst;

}

(continues on next page)

87

Principles of Programming

(continued from previous page)

/**
* @brief Stores a point cloud into a binary PLY file.
*
*
* More concretely, it takes the given point cloud, creates vectors (memcopy,␣

↪inefficient,
* but at the moment okay) and for each of those vectors creates an element "vertex

↪"
* with attributes X, Y, and Z holding double values as typical.
*
* @param filename is the name of the file
* @param pcl is the point cloud
* @return void
*/

void writePly(std::string filename, const pointcloud &pcl)
{

std::vector<double> x,y,z;
x.reserve(pcl.size());
y.reserve(pcl.size());
z.reserve(pcl.size());
for (const auto &p:pcl)
{

x.push_back(bg::get<0> (p));
y.push_back(bg::get<1> (p));
z.push_back(bg::get<2> (p));

}

happly::PLYData plyOut;
plyOut.addElement("vertex", x.size());

plyOut.getElement("vertex").addProperty<double>("x", x);
plyOut.getElement("vertex").addProperty<double>("y", y);
plyOut.getElement("vertex").addProperty<double>("z", z);

plyOut.write(filename, happly::DataFormat::Binary); // or ASCII

}

template<typename benchmark_strategy=notictoc>
std::vector<double> distanceMatrix(const pointcloud &A,const pointcloud &B)
{

std::vector<double> dm (A.size() * B.size());
{ benchmark_strategy bench("DistanceMatrix for "+std::to_string(A.size()) + " and

↪" + std::to_string(B.size()));
for (size_t i=0; i<A.size(); i++)
{

dm[i*B.size()+i] = 0;
for (size_t j=i+1; j<B.size(); j++)
dm[j*B.size()+i]=dm[i*B.size()+j] = bg::distance(A[i],B[j]);

}
}
return dm;

}

(continues on next page)

88 Chapter 16. happly and boost geometry - Load Point Clouds in C++11

Principles of Programming

(continued from previous page)

namespace strategy{
/// The strategy for taking the mean of the distance matrix

class mean{};
};

/**
* @brief Compute Distance with given strategy
*

* @param A a point cloud
* @param B a point cloud
* @return the distance
*/

template<typename strategy>
double pcl_dist(const pointcloud &A, const pointcloud &B){

throw std::runtime_error("Not specific enough. Give a distance");
return 0;

}

/**
* @brief Implement the distance using mean strategy
*
* @param A a point cloud
* @param B a point cloud
*/

template<>
double pcl_dist<strategy::mean>(const pointcloud &A, const pointcloud &B)
{

auto dm = distanceMatrix(A,B);
double v = std::accumulate(dm.begin(),dm.end(),0);
return v / dm.size();

}

89

Principles of Programming

90 Chapter 16. happly and boost geometry - Load Point Clouds in C++11

Part V

Tutorial Assignments

91

CHAPTER

SEVENTEEN

TUTORIAL NO. 1 - CHECK YOUR KNOWLEDGE

Answer the following questions with yes or no:

17.1 Basic Computer Knowledge

17.1.1 Hardware

• Do you know how disk (block devices) can be cut into partitions
• Do you know what the role of the Basic Input Output System (BIOS) is in starting up your computer
• What is the MBR
• Did you replace a component of your computer yourself (e.g., a drive, a harddisk, the graphics card)
• Did you build a computer from scratch (starting with the mainboard, adding memory and CPU, etc.)

17.1.2 The Windows Operating System

• Did you already install a Windows operating system to a computer

17.1.3 The Linux Operating System

• Have you used a Linux computer
• Have you installed a Linux computer (or virtual machine running Linux)
• Did you rent a Linux-based virtual server
• Did you write a program dedicated for running on a Linux computer

17.1.4 The Internet

• Did you use a web browser
• Did you use a command line tool for accessing the web (wget, curl,…)
• Do you know the inner workings of at least one text-based Internet protocol like SMTP, POP3, or FTP
• Do you know what RESTful services should be
• Do you know Service-Oriented Architectures (SOA) mainly built on XML-specified web services

93

Principles of Programming

• Did you create a web page
• Did you use web service

17.2 Spatial Data Exposure

• Do you have experience with geospatial simple feature data?
• Do you have experience with point clouds
• Do you have experience with OpenStreetMap data
• Do you have experience with RGB images (camera)
• Do you have experience with orthophotos (RGB)
• Do you have experience with optical satellite imagery (multispectral)
• Do you have experience with SAR data
• Do you have experience with mobile devices deploying some GNSS
• Do you have experience with accellerometers and gyroscopes
• Do you know projections and their impact on spatial data representation
• Are you able to reproject a GeoTIFF file into another projection

17.3 Spatial Tools

• Did you create an online map in HTML/Javascript using the Leaflet Framework
• Do you know the mapnik rendering toolkit
• Did you perform spatial statistics
• Did you perform spatial interpolation
• Did you work with QGIS
• Did you use Python within QGIS
• Did you work with Blender
• Did you use Python within Blender
• Did you work with ArcGIS

17.4 Algorithms Knowledge

• Do you know the Dijkstra Algorithm
• Do you know the Algorithm of Floyd
• Do you know how to calculate the shortest path on a sphere
• Can you imagine and algorithm to find the nearest encounter for ships on a sphere?
• Can you formulate the Traveling Salesman Problem
• Do you know what the Fréchet Distance of Spatial Trajectories is

94 Chapter 17. Tutorial No. 1 - Check your knowledge

Principles of Programming

• Do you know a means to compare sets of points with each other. If so, which one?

17.5 Special Aspects you want to see covered

(just write up to a single paragraph here)

17.5. Special Aspects you want to see covered 95

Principles of Programming

96 Chapter 17. Tutorial No. 1 - Check your knowledge

CHAPTER

EIGHTEEN

TASK SHEET 1: NIKI THE ROBOT

Niki is a traditional environment to teach programming. It is about a small robot that has a very limited set of sensors and
actions. However, Niki can be programmed in various ways to solve quite complex problems. As Niki does not have a
concept of variables, it uses the environment of the robot to store information. In order to efficiently solve some advanced
tasks, Niki provides support for recursion, allowing simple solutions to some complex problems.
Below screenshot shows the result of our joint exploration of Niki in the lecture:

97

Principles of Programming

18.1 Learning Outcome

We learn how to use loops and conditions to solve some toy problems for Niki. We prepare for the principle of recursion.

18.2 Task 1: Doubling Numbers

Program Niki to initialize a vertical tower of deposited markers starting at location 1/1. The height of the tower shall be
interpreted as an natural number. Assure and assume that the robot is located on the basement of the first tower looking
right. Now, write a program (decompose it into procedures where sensible) to double the number by creating a tower
right of the given tower with double the height. (Tip: An oral explanation of a possible implementation is given in the
lecture video)

18.3 Disclaimer

Below assignments have been taken from the Niki manual. They have been formulated by various people, but not from me.

18.4 Task 2: Staircase

Recreate the given world (click on Arbeitsfeld->Verändern), now the mouse will show you what changes a click would
do. These include

• placing markers
• placing walls
• placing the robot

a) Write a program that knows the world and picks up the marker, brings it to the podest and deposits it there.
b) Based on domain knowledge that there is first a double staircase and then a podest, find the marker on the podest
without knowing the detailed shape or position of the marker and bring it to the podest

98 Chapter 18. Task Sheet 1: Niki the robot

Principles of Programming

18.5 Task 3: Storage

Niki is supposed to sort the large items (two markers) into the bottom line of the depicted storage space and the small
ones (one marker) into the upper row. In a first version, he keeps the X location of all of those. In a more advanced
version, the result is supposed to be that the both rows are filled from left to right.

18.6 Task 4: Waste Collection

Niki is somewhere within a hall. The hall has one single entrance. Along the outside wall, there is waste deposited. Niki is
supposed to pick up all the waste (not knowing where exactly it is, just that it is adjacent to the wall). Write a program for
it. (Tip: Try to program it such that left of Niki is always a wall. This is called left hand rule and would walk around any
polygons inner or outer boundaries. With the one hole, this rule would change from the inner to the outer boundary and
back). This tip enlightens us with a simple fact: sometimes very hard programs can be written pretty concisely by finding
an invariant (a natural language condition that remains true throughout the program or program part like a loop). Then,
we do a mathematical proof that this invariant is exhausting the problem space (no programming needed) and implement
the program (only make sure the invariant is never broken). This approach leads to a notion of algorithmic correctness
we will discuss later.

18.5. Task 3: Storage 99

Principles of Programming

18.7 Task 5: Tunnel

LetNiki pick up the item in the following case
In a few weeks, extend this task by bringing the item back to the beginning of the tunnel of unknown shape. Therefore,
either memory (which Niki does not have) or recursion (which Niki has) is requied.

18.8 Task 6: Signs in the world

The graphics visualizes a map in which Niki is supposed to follow the marked cells. The following rules are in place
• a cell filled with one marker means go straight.
• two markers and three markers stand for specific turns

100 Chapter 18. Task Sheet 1: Niki the robot

	I Basic Knowledge
	The Disk Operating System (DOS)
	Automation in Windows
	Microsoft Windows
	Unix, Linux, and POSIX
	POSIX
	Linux as seen by a user
	Example: Processing data in a Linux environment

	Imperative Programming
	A Robot Model of Intrinsic Instructions
	Procedures
	Ports and Functions
	Control Structures
	Scopes
	Memory
	Variables
	An example robot program sketch
	Algorithm Design

	II Python
	Python basics
	Table of contents
	Data types
	Naming conventions
	Arithmetic operations
	Execution order:

	Boolean operations
	Comparisons
	Explicit conversions
	Implicit conversions
	Single condition
	Complex decisions
	Ternary if statement
	Indexing
	Slicing
	Editing
	Manipulation
	More list operations

	While loop
	For loop
	List comprehension
	Enumeration
	Looping over two lists

	Break and continue
	Multiple return types
	Keyword parameters

	Importing modules
	Class definition
	Class usage
	SyntaxError
	IndentationError
	TypeError
	ValueError

	III Geospatial Images
	Geospatial Raster Images - The GDAL Library
	Learning Steps:
	Reference Information beyond the scope of this lecture
	Installation
	Docker File
	Container Run

	GDAL Primer
	The Dataset Object

	Raster Bands
	Reading from the Raster
	True Color Snippet
	Conclusion

	IV Libraries and Stories
	Reading and Writing PLY files (point cloud example)
	happly and boost geometry - Load Point Clouds in C++11

	V Tutorial Assignments
	Tutorial No. 1 - Check your knowledge
	Basic Computer Knowledge
	Hardware
	The Windows Operating System
	The Linux Operating System
	The Internet

	Spatial Data Exposure
	Spatial Tools
	Algorithms Knowledge
	Special Aspects you want to see covered

	Task Sheet 1: Niki the robot
	Learning Outcome
	Task 1: Doubling Numbers
	Disclaimer
	Task 2: Staircase
	Task 3: Storage
	Task 4: Waste Collection
	Task 5: Tunnel
	Task 6: Signs in the world

